GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps

被引:41
|
作者
Robertson, Michael J. [1 ]
van Zundert, Gydo C. P. [3 ]
Borrelli, Kenneth [3 ]
Skiniotis, Georgios [1 ,2 ]
机构
[1] Stanford Univ, Dept Mol & Cellular Physiol, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Struct Biol, Sch Med, Stanford, CA 94305 USA
[3] Schrodinger, New York, NY 10036 USA
关键词
PROTEIN; DOCKING; MOLECULES; DISCOVERY;
D O I
10.1016/j.str.2020.04.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Producing an accurate atomic model of biomolecule-ligand interactions from maps generated by cryoelectron microscopy (cryo-EM) often presents challenges inherent to the methodology and the dynamic nature of ligand binding, Here, we present GemSpot, an automated pipeline of computational chemistry methods that take into account EM map potentials, quantum mechanics energy calculations, and water molecule site prediction to generate candidate poses and provide a measure of the degree of confidence. The pipeline is validated through several published cryo-EM structures of complexes in different resolution ranges and various types of ligands. In all cases, at least one identified pose produced both excellent interactions with the target and agreement with the map. GemSpot will be valuable for the robust identification of ligand poses and drug discovery efforts through cryo-EM.
引用
收藏
页码:707 / +
页数:13
相关论文
共 50 条
  • [1] GemSpot allows modeling of ligands in cryo-EM maps
    Arunima Singh
    Nature Methods, 2020, 17 : 656 - 656
  • [2] GemSpot allows modeling of ligands in cryo-EM maps
    Singh, Arunima
    NATURE METHODS, 2020, 17 (07) : 656 - 656
  • [3] Automated atomic modeling in cryo-EM maps
    Singh, Arunima
    NATURE METHODS, 2024, 21 (05) : 749 - 749
  • [4] Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps
    Habeck, Michael
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2017, 4
  • [5] Practical Considerations for Atomistic Structure Modeling with Cryo-EM Maps
    Kim, Doo Nam
    Gront, Dominik
    Sanbonmatsu, Karissa Y.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (05) : 2436 - 2442
  • [6] De Novo modeling in cryo-EM density maps with Pathwalking
    Chen, Muyuan
    Baldwin, Philip R.
    Ludtke, Steven J.
    Baker, Matthew L.
    JOURNAL OF STRUCTURAL BIOLOGY, 2016, 196 (03) : 289 - 298
  • [7] De Novo Computational Protein Tertiary Structure Modeling Pipeline for Cryo-EM Maps of Intermediate Resolution
    Kihara, Daisuke
    Terashi, Genki
    Subramaniya, Sai Raghavendra Maddhuri Venkata
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 292A - 292A
  • [8] Density modification of cryo-EM maps
    Terwilliger, Thomas C.
    Sobolev, Oleg V.
    Afonine, Pavel V.
    Adams, Paul D.
    Read, Randy J.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2020, 76 : 912 - 925
  • [9] Modelling structures in cryo-EM maps
    Malhotra, Sony
    Trager, Sylvain
    Dal Peraro, Matteo
    Topf, Maya
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2019, 58 : 105 - 114
  • [10] Confidence maps: statistical inference of cryo-EM maps
    Beckers, Maximilian
    Palmer, Colin M.
    Sachse, Carsten
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2020, 76 : 332 - 339