Research on the effect of thermal treatment on the crack resistance curve of marble using notched semi-circular bend specimen

被引:18
作者
Wu, You [1 ]
Yin, Tubing [1 ]
Zhuang, Dengdeng [1 ]
Li, Qiang [1 ]
Chen, Yongjun [1 ]
机构
[1] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal treatment; K-resistance curve; Fracture toughness; Fracture process zone; NSCB specimen; DIGITAL IMAGE CORRELATION; FRACTURE PROCESS ZONE; MODE-I FRACTURE; EXTENSION RESISTANCE; STATISTICAL-ANALYSIS; MECHANICAL-BEHAVIOR; SUGGESTED METHOD; TOUGHNESS; ROCK; SIZE;
D O I
10.1016/j.tafmec.2022.103344
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The crack resistance curve is widely used to describe the complete fracture process of quasi-brittle materials. In the paper, the crack resistance curves of thermally treated marble were tested through the notched semi-circular bend specimens. The acoustic emission (AE) and digital image correlation (DIC) techniques were used to monitor the fracture behaviors of the specimens during the test. The AE results indicated that the crack will initiate from the notch when the axial load is less than the peak load. And, when the axial load reaches the peak load, the DIC results demonstrated that there exists a large fracture process zone (FPZ) in front of the crack notch. The effect crack length was calculated by the compliance method, which is coincided with the DIC results. The amplitude of the crack resistance curves decreases with the increase of treatment temperature, which suggested that the fracture resistance of the specimen declines due to thermal treatment. Based on the K-resistance curves, the initial fracture toughness, unstable fracture toughness, and fracture toughness when FPZ is fully formed have been determined for the thermally treated specimens. The results showed that these parameters both decrease in the increase of treatment temperature. Moreover, The FPZ length first increases and then decreases with the increase of normalized crack length and the critical and maximum non-dimensional FPZ length tends to increase with the increase in treatment temperature.
引用
收藏
页数:18
相关论文
共 66 条
[1]   Statistical Analysis of Rock Fracture Toughness Data Obtained from Different Chevron Notched and Straight Cracked Mode I Specimens [J].
Aliha, M. R. M. ;
Mahdavi, E. ;
Ayatollahi, M. R. .
ROCK MECHANICS AND ROCK ENGINEERING, 2018, 51 (07) :2095-2114
[2]   Geometry effects and statistical analysis of mode I fracture in guiting limestone [J].
Aliha, M. R. M. ;
Sistaninia, M. ;
Smith, D. J. ;
Pavier, M. J. ;
Ayatollahi, M. R. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2012, 51 :128-135
[3]   Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading [J].
Aliha, M. R. M. ;
Ayatollahi, M. R. ;
Smith, D. J. ;
Pavier, M. J. .
ENGINEERING FRACTURE MECHANICS, 2010, 77 (11) :2200-2212
[4]   The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials [J].
Aliha, Mohammad Reza Mohammad ;
Mahdavi, Eqlima ;
Ayatollahi, Majid Reza .
PURE AND APPLIED GEOPHYSICS, 2017, 174 (03) :1237-1253
[5]  
[Anonymous], 1988, INT J ROCK MECH MIN, V25, P71
[6]   Size and Geometry Effects on Rock Fracture Toughness: Mode I Fracture [J].
Ayatollahi, M. R. ;
Akbardoost, J. .
ROCK MECHANICS AND ROCK ENGINEERING, 2014, 47 (02) :677-687
[7]   Size effects on fracture toughness of quasi-brittle materials - A new approach [J].
Ayatollahi, M. R. ;
Akbardoost, J. .
ENGINEERING FRACTURE MECHANICS, 2012, 92 :89-100
[8]   DETERMINATION OF FRACTURE ENERGY, PROCESS ZONE LENGTH AND BRITTLENESS NUMBER FROM SIZE EFFECT, WITH APPLICATION TO ROCK AND CONCRETE [J].
BAZANT, ZP ;
KAZEMI, MT .
INTERNATIONAL JOURNAL OF FRACTURE, 1990, 44 (02) :111-131
[9]   IDENTIFICATION OF NONLINEAR FRACTURE PROPERTIES FROM SIZE EFFECT TESTS AND STRUCTURAL-ANALYSIS BASED ON GEOMETRY-DEPENDENT R-CURVES [J].
BAZANT, ZP ;
GETTU, R ;
KAZEMI, MT .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES & GEOMECHANICS ABSTRACTS, 1991, 28 (01) :43-51
[10]   Ncorr: Open-Source 2D Digital Image Correlation Matlab Software [J].
Blaber, J. ;
Adair, B. ;
Antoniou, A. .
EXPERIMENTAL MECHANICS, 2015, 55 (06) :1105-1122