CPT theorem in a (5+1) Galilean space-time

被引:3
|
作者
Kobayashi, M. [1 ,2 ]
de Montigny, M. [1 ,3 ]
Khanna, F. C. [1 ,4 ]
机构
[1] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
[2] Gifu Univ, Dept Phys, Gifu 5011193, Japan
[3] Univ Alberta, Edmonton, AB T6C 4G9, Canada
[4] TRIUMF, Vancouver, BC V6T 2A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CPT invariance; Galilean symmetry; Lorentz symmetry;
D O I
10.1016/j.physleta.2008.02.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the 5-dimensional Galilean space-time to a (5 + 1) Galilean space-time in order to define a parity transformation in a covariant manner. This allows us to discuss the discrete symmetries in the Galilean space-time, which is embedded in the (5 + 1) Minkowski space-time. We discuss the Dirac-type field, for which we give the 8 x 8 gamma matrices explicitly. We demonstrate that the CPT theorem holds in the (5 + 1) Galilean space-time. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3541 / 3547
页数:7
相关论文
共 50 条
  • [31] Cost Advantage of Network Coding in Space for Irregular (5+1) Model
    Wen, Ting
    Zhang, Xiaoxi
    Huang, Xin
    Huang, Jiaqing
    2013 IEEE 11TH INTERNATIONAL CONFERENCE ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING (DASC), 2013, : 642 - 647
  • [32] GEOMETRICAL 1ST ORDER SUPERGRAVITY IN 5 SPACE-TIME DIMENSIONS
    DAURIA, R
    MAINA, E
    REGGE, T
    FRE, P
    ANNALS OF PHYSICS, 1981, 135 (02) : 237 - 269
  • [33] SPACE-TIME
    Rahli, Hocine
    INFINI, 2019, (145): : 12 - 20
  • [34] Space-Time
    Neuber, Matthias
    ZEITSCHRIFT FUR PHILOSOPHISCHE FORSCHUNG, 2011, 65 (03): : 458 - 461
  • [35] SPACE AND TIME AND SPACE-TIME ORGANIZATION
    ABASOV, AS
    VOPROSY FILOSOFII, 1985, (11) : 71 - 81
  • [36] ON THE ACAUSALITY OF TIME, SPACE, AND SPACE-TIME
    LEPOIDEVIN, R
    ANALYSIS, 1992, 52 (03) : 146 - 154
  • [37] SPACE-TIME
    不详
    ESPRIT, 2020, (05) : 5 - 7
  • [38] SPACE, TIME, SPACE-TIME AND SOCIETY
    BAKER, PL
    SOCIOLOGICAL INQUIRY, 1993, 63 (04) : 406 - 424
  • [39] EXISTENCE OF TIME, SPACE AND SPACE-TIME
    HORWICH, P
    NOUS, 1978, 12 (04): : 397 - 419
  • [40] Fate of κ-Minkowski space-time in non-relativistic (Galilean) and ultra-relativistic (Carrollian) regimes
    Bose, Deeponjit
    Chakraborty, Anwesha
    Chakraborty, Biswajit
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):