Single-Cell Analysis Reveals that Noncoding RNAs Contribute to Clonal Heterogeneity by Modulating Transcription Factor Recruitment

被引:99
|
作者
Bumgarner, Stacie L. [2 ]
Neuert, Gregor [1 ]
Voight, Benjamin F. [3 ,4 ]
Symbor-Nagrabska, Anna [2 ]
Grisafi, Paula [2 ]
van Oudenaarden, Alexander [1 ]
Fink, Gerald R. [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Whitehead Inst Biomed Res, Cambridge Ctr 9, Cambridge, MA 02142 USA
[3] Broad Inst Harvard & MIT, Cambridge Ctr 7, Cambridge, MA 02142 USA
[4] Univ Penn, Perelman Sch Med, Dept Pharmacol, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GENE-EXPRESSION; BIDIRECTIONAL PROMOTERS; MAP KINASE; CHROMATIN; EVOLUTION; SELECTION;
D O I
10.1016/j.molcel.2011.11.029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mechanisms through which long intergenic noncoding RNAs (ncRNAs) exert regulatory effects on eukaryotic biological processes remain largely elusive. Most studies of these phenomena rely on methods that measure average behaviors in cell populations, lacking resolution to observe the effects of ncRNA transcription on gene expression in a single cell. Here, we combine quantitative single-molecule RNA FISH experiments with yeast genetics and computational modeling to gain mechanistic insights into the regulation of the Saccharomyces cerevisiae protein-coding gene FLO11 by two intergenic ncRNAs, ICR1 and PWR1. Direct detection of FLO11 mRNA and these ncRNAs in thousands of individual cells revealed alternative expression states and provides evidence that ICR1 and PWR1 contribute to FLO11's variegated transcription, resulting in Flo11-dependent phenotypic heterogeneity in clonal cell populations by modulating recruitment of key transcription factors to the FLO11 promoter.
引用
收藏
页码:470 / 482
页数:13
相关论文
共 50 条
  • [1] Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis
    Churko, Jared M.
    Garg, Priyanka
    Treutlein, Barbara
    Venkatasubramanian, Meenakshi
    Wu, Haodi
    Lee, Jaecheol
    Wessells, Quinton N.
    Chen, Shih-Yu
    Chen, Wen-Yi
    Chetal, Kashish
    Mantalas, Gary
    Neff, Norma
    Jabart, Eric
    Sharma, Arun
    Nolan, Garry P.
    Salomonis, Nathan
    Wu, Joseph C.
    NATURE COMMUNICATIONS, 2018, 9
  • [2] Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma
    Zheng, Hongping
    Pomyen, Yotsawat
    Hernandez, Maria Olga
    Li, Caiyi
    Livak, Ferenc
    Tang, Wei
    Dang, Hien
    Greten, Tim F.
    Davis, Jeremy L.
    Zhao, Yongmei
    Mehta, Monika
    Levin, Yelena
    Shetty, Jyoti
    Tran, Bao
    Budhu, Anuradha
    Wang, Xin Wei
    HEPATOLOGY, 2018, 68 (01) : 127 - 140
  • [3] Phylogenetic Comparative Analysis of Single-Cell Transcriptomes Reveals Constrained Accumulation of Gene Expression Heterogeneity during Clonal Expansion
    Chen, Feng
    Li, Zizhang
    Zhang, Xiaoyu
    Wu, Peng
    Yang, Wenjing
    Yang, Junnan
    Chen, Xiaoshu
    Yang, Jian-Rong
    MOLECULAR BIOLOGY AND EVOLUTION, 2023, 40 (05)
  • [4] Single-cell analysis reveals metastatic cell heterogeneity in clear cell renal cell carcinoma
    Liu, Kun
    Gao, Rui
    Wu, Hao
    Wang, Zhe
    Han, Guang
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (09) : 4260 - 4274
  • [5] Accurate tumor clonal structures require single-cell analysis
    Su, Xianbin
    Bai, Shihao
    Xie, Gangcai
    Shi, Yi
    Zhao, Linan
    Yang, Guoliang
    Tian, Futong
    He, Kun-Yan
    Wang, Lan
    Li, Xiaolin
    Long, Qi
    Han, Ze-Guang
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2022, 1517 (01) : 213 - 224
  • [6] Single-cell epigenomic variability reveals functional cancer heterogeneity
    Litzenburger, Ulrike M.
    Buenrostro, Jason D.
    Wu, Beijing
    Shen, Ying
    Sheffield, Nathan C.
    Kathiria, Arwa
    Greenleaf, William J.
    Chang, Howard Y.
    GENOME BIOLOGY, 2017, 18
  • [7] Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity
    Mansson, Robert
    Zandi, Sasan
    Welinder, Eva
    Tsapogas, Panagiotis
    Sakaguchi, Nobuo
    Bryder, David
    Sigvardsson, Mikael
    BLOOD, 2010, 115 (13) : 2601 - 2609
  • [8] A Bayesian inference transcription factor activity model for the analysis of single-cell transcriptomes
    Gao, Shang
    Dai, Yang
    Rehman, Jalees
    GENOME RESEARCH, 2021, 31 (07) : 1296 - 1311
  • [9] Systematic analysis reveals long noncoding RNAs regulating neighboring transcription factors in human cancers
    Liu, Zhi
    Dai, Juncheng
    Shen, Hongbing
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2018, 1864 (09): : 2785 - 2792
  • [10] Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies
    Bakker, Bjorn
    Taudt, Aaron
    Belderbos, Mirjam E.
    Porubsky, David
    Spierings, Diana C. J.
    de Jong, Tristan V.
    Halsema, Nancy
    Kazemier, Hinke G.
    Hoekstra-Wakker, Karina
    Bradley, Allan
    de Bont, Eveline S. J. M.
    van den Berg, Anke
    Guryev, Victor
    Lansdorp, Peter M.
    Colome-Tatche, Maria
    Foijer, Floris
    GENOME BIOLOGY, 2016, 17