Existence of solutions of nonlinear fractional differential equations at resonance

被引:0
作者
Rui, Wenjuan [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221008, Peoples R China
关键词
Fractional differential equations; Boundary value problems; Resonance; Coincidence degree theory; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of solutions of nonlinear fractional differential equations at resonance. By using the coincidence degree theory due to Mawhin, the existence of solutions is obtained.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 19 条
  • [11] Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Liang, Sihua;Zhang, Jihui. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009(11)
  • [12] Mainardi F., 1995, NONLINEAR WAVES SOLI, P93
  • [13] Mainardi F., 1997, Fractals and Fractional Calculus in Continuum Mechanics, P291, DOI DOI 10.1007/978-3-7091-2664-6_7
  • [14] Mawhin J., 1993, LECT NOTES MATH, V1537, P74
  • [15] Boundary value problems for fractional diffusion equations[J]. Metzler, R;Klafter, J. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000(1-2)
  • [16] RELAXATION IN FILLED POLYMERS - A FRACTIONAL CALCULUS APPROACH[J]. METZLER, R;SCHICK, W;KILIAN, HG;NONNENMACHER, TF. JOURNAL OF CHEMICAL PHYSICS, 1995(16)
  • [17] Oldham K.B., 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
  • [18] ANOMALOUS TRANSIT-TIME DISPERSION IN AMORPHOUS SOLIDS[J]. SCHER, H;MONTROLL, EW. PHYSICAL REVIEW B, 1975(06)
  • [19] Zhang S., 2006, Electric J. Differ. Equ, V36, P1