Path integral approach to dissipation in solid-state qubits

被引:1
|
作者
Reina, John H. [1 ]
Bririd, Adel [2 ]
机构
[1] Univ Valle, Dept Fis, Cali 25360, Colombia
[2] Univ Cambridge, Cavendish Lab, Microelect Res Ctr, Cambridge CB3 0HE, England
关键词
quantum dissipation; path integral; non-Markovian quantum dynamics; nanostructures;
D O I
10.1016/j.mejo.2007.09.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We provide a full numerical characterization of non-Markovian quantum decoherence for a two-level (qubit) system coupled to a tailorable reservoir by studying the influence of different factors, such as system-reservoir coupling and temperature. The necessity of a decoherence analysis from short to long time ranges and for a large set of parameters are fundamental requirements for quantum information processing in order to produce a controlled conditional quantum dynamics. We show how the Feynman-Vernon influence functional technique can be used in order to obtain a numerical algorithm that enables a full characterization of non-Markovian processes. This analysis paves the way for modeling the prevention and control of decoherence in solid-state systems with ultrafast dynamics and strong environmental coupling. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:696 / 698
页数:3
相关论文
共 50 条
  • [31] Engineering the quantum-classical interface of solid-state qubits
    Reilly, David J.
    NPJ QUANTUM INFORMATION, 2015, 1
  • [32] Theoretical analysis of continuously driven dissipative solid-state qubits
    Goorden, MC
    Wilhelm, FK
    PHYSICAL REVIEW B, 2003, 68 (01)
  • [33] Realization of a multinode quantum network of remote solid-state qubits
    Pompili, M.
    Hermans, S. L. N.
    Baier, S.
    Beukers, H. K. C.
    Humphreys, P. C.
    Schouten, R. N.
    Vermeulen, R. F. L.
    Tiggelman, M. J.
    Martins, L. dos Santos
    Dirkse, B.
    Wehner, S.
    Hanson, R.
    SCIENCE, 2021, 372 (6539) : 259 - +
  • [34] A central spin coordinates a nuclear crowd: Solid-state qubits
    Lei, Xia
    Zhai, Liang
    NATURE PHYSICS, 2025, 21 (03) : 334 - 335
  • [35] Asymptotic von Neumann measurement strategy for solid-state qubits
    Wilhelm, FK
    PHYSICAL REVIEW B, 2003, 68 (06)
  • [36] Hybrid Solid-State Qubits: The Powerful Role of Electron Spins
    Morton, John J. L.
    Lovett, Brendon W.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 2, 2011, 2 : 189 - 212
  • [37] Quantum control of electron and nuclear spin qubits in the solid-state
    Dutt, M. V. Gurudev
    Childress, L.
    Togan, E.
    Taylor, J. M.
    Jiang, L.
    Zibrov, A. S.
    Hemmer, P. R.
    Jelezko, F.
    Wrachtrup, J.
    Lukin, M. D.
    ATOMIC PHYSICS 20, 2006, 869 : 119 - +
  • [38] Metropolitan-scale heralded entanglement of solid-state qubits
    Stolk, Arian J.
    van der Enden, Kian L.
    Slater, Marie-Christine
    te Raa-Derckx, Ingmar
    Botma, Pieter
    van Rantwijk, Joris
    Biemond, J. J. Benjamin
    Hagen, Ronald A. J.
    Herfst, Rodolf W.
    Koek, Wouter D.
    Meskers, Adrianus J. H.
    Vollmer, Rene
    van Zwet, Erwin J.
    Markham, Matthew
    Edmonds, Andrew M.
    Geus, J. Fabian
    Elsen, Florian
    Jungbluth, Bernd
    Haefner, Constantin
    Tresp, Christoph
    Stuhler, Juergen
    Ritter, Stephan
    Hanson, Ronald
    SCIENCE ADVANCES, 2024, 10 (44):
  • [39] Solid-State Qubits: 3D Integration and Packaging
    Rosenberg, Danna
    Weber, Steven J.
    Conway, David
    Yost, Donna-Ruth W.
    Mallek, Justin
    Calusine, Gregory
    Das, Rabindra
    Kim, David
    Schwartz, Mollie E.
    Woods, Wayne
    Yoder, Jonilyn L.
    Oliver, William D.
    IEEE MICROWAVE MAGAZINE, 2020, 21 (08) : 72 - 85
  • [40] Design of realistic switches for coupling superconducting solid-state qubits
    Storcz, MJ
    Wilhelm, FK
    APPLIED PHYSICS LETTERS, 2003, 83 (12) : 2387 - 2389