Multifractal structure of Bernoulli convolutions

被引:23
作者
Jordan, Thomas [1 ]
Shmerkin, Pablo [2 ]
Solomyak, Boris [3 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Univ Surrey, Dept Math, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
GIBBS PROPERTIES; FORMALISM; DIMENSION; SERIES; BASES; SETS;
D O I
10.1017/S0305004111000466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let. p. be the distribution of the random series Sigma(infinity)(n=1) in lambda(n), where i(n) is a sequence of i.i.d. random variables taking the values 0,1 with probabilities p, 1 - p. These measures are the well-known (biased) Bernoulli convolutions. In this paper we study the multifractal spectrum of nu(p)(lambda) for typical lambda. Namely, we investigate the size of the sets Delta(lambda, p) (alpha) = {x is an element of R : lim(r SE arrow 0) log nu(p)(lambda) (B(x,r))/log r = alpha}. Our main results highlight the fact that for almost all, and in some cases all, lambda in an appropriate range, Delta(lambda, p) (alpha) is nonempty and, moreover, has positive Hausdorff dimension, for many values of alpha. This happens even in parameter regions for which nu(p)(lambda) is typically absolutely continuous.
引用
收藏
页码:521 / 539
页数:19
相关论文
共 30 条
  • [1] ALEXANDER JC, 1988, LECT NOTES MATH, V1342, P1
  • [2] Arbeiter M, 1996, MATH NACHR, V181, P5
  • [3] MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS
    CAWLEY, R
    MAULDIN, RD
    [J]. ADVANCES IN MATHEMATICS, 1992, 92 (02) : 196 - 236
  • [4] Dajani K., 2002, Carus Mathematical Monographs, V29
  • [5] CHARACTERIZATION OF THE UNIQUE EXPANSIONS 1=SIGMA-I=1 INFINITY Q-NI AND RELATED PROBLEMS
    ERDOS, P
    JOO, I
    KOMORNIK, V
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03): : 377 - 390
  • [6] Falconer K., 1997, Techniques in Fractal Geometry
  • [7] Gibbs properties of self-conformal measures and the multifractal formalism
    Feng, De-Jun
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 787 - 812
  • [8] Feng DJ, 2005, ASIAN J MATH, V9, P473
  • [9] Multifractal formalism for self-similar measures with weak separation condition
    Feng, De-Jun
    Lau, Ka-Sing
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (04): : 407 - 428
  • [10] Dimension Theory of Iterated Function Systems
    Feng, De-Jun
    Hu, Huyi
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) : 1435 - 1500