On Lp-solutions for a class of sequential fractional differential equations

被引:61
作者
Baleanu, Dumitru [1 ]
Mustafa, Octavian G. [2 ]
Agarwal, Ravi P. [3 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Balgat Ankara, Turkey
[2] Univ Craiova, DAL, Dept Math & Comp Sci, Craiova 200534, Romania
[3] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
关键词
Sequential fractional differential equation; L-p-solution; Limit-circle/limit-point classification of differential equations;
D O I
10.1016/j.amc.2011.07.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under some simple conditions on the coefficient a( t), we establish that the initial value problem ((0)D(t)(alpha)x)' + a(t)x = 0; t > 0; lim(t SE arrow 0)[t(1-alpha)x(t)] = 0 has no solution in L-p((1, +infinity), R), where p-1/p > alpha > 1/p and D-0(t)alpha designates the Riemann-Liouville derivative of order alpha Our result might be useful for developing a non-integer variant of H. Weyl's limit-circle/limit-point classification of differential equations. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2074 / 2081
页数:8
相关论文
共 20 条
[1]   A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative [J].
Agarwal, Ravi P. ;
Belmekki, Mohammed ;
Benchohra, Mouffak .
ADVANCES IN DIFFERENCE EQUATIONS, 2009, :1-47
[2]  
Agarwal RP, 2009, GEORGIAN MATH J, V16, P401
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   On the solution set for a class of sequential fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
[6]   An existence result for a superlinear fractional differential equation [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1129-1132
[7]  
Bartusek M., 2004, The Nonlinear Limit-Point/Limit-Circle Problem
[8]  
Burlak J., 1965, P EDINBURGH MATH SOC, V14, P257
[9]   ON THE NONOSCILLATION, CONVERGENCE TO ZERO, AND INTEGRABILITY OF SOLUTIONS OF A 2ND-ORDER NONLINEAR DIFFERENTIAL-EQUATION [J].
GRAEF, JR ;
SPIKES, PW .
MATHEMATISCHE NACHRICHTEN, 1987, 130 :139-149
[10]   ON THE NONEXISTENCE OF L2-SOLUTIONS OF NTH ORDER DIFFERENTIAL-EQUATIONS [J].
GRAMMATIKOPOULOS, MK ;
KULENOVIC, MR .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1981, 24 (JUN) :131-136