Kahlerian Lie algebras and double extension

被引:37
作者
Dardie, JM [1 ]
Medina, A [1 ]
机构
[1] UNIV MONTPELLIER 2, DEPT MATH, UA 1407 CNRS, GDR 144, F-34095 MONTPELLIER 5, FRANCE
关键词
D O I
10.1006/jabr.1996.0350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Kahler Lie algebra is a real Lie algebra carrying a symplectic 2-cocycle omega and an integrable complex structure j such that omega(x, j(y)) is a scalar product. We give a process, called Kahler double extension, which realizes a Kahler Lie algebra as the Kahler reduction of another one. We show that every Kahler algebra is obtained by a sequence of such a process from {0} or a flat Kahler algebra; it is obtained from {0} iff it contained a lagrangian sub-algebra. These methods allow us to prove that any completely solvable and unimodular Kahler algebra is commutative. (C) 1996 Academic Press, Inc.
引用
收藏
页码:774 / 795
页数:22
相关论文
共 24 条
[1]  
[Anonymous], 1980, ANN I FOURIER
[2]   KAHLER AND SYMPLECTIC STRUCTURES ON NILMANIFOLDS [J].
BENSON, C ;
GORDON, CS .
TOPOLOGY, 1988, 27 (04) :513-518
[3]   AFFINE GROUP AS SYMPLECTIC MANIFOLD [J].
BORDEMANN, M ;
MEDINA, A ;
OUADFEL, A .
TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (03) :423-436
[4]  
BOYOM MN, COMMUNICATION
[5]  
CHU BY, 1974, T AM MATH SOC, V197, P145
[6]   Double extension symplectique d'un groupe de Lie symplectique [J].
Dardie, JM ;
Medina, A .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :208-227
[7]  
DARDIE JM, 1993, THESIS U MONTPELLIER
[8]  
DARDIE JM, SEM G DARB MONTP 199, P77
[9]  
DORFMEISTER J, 1986, ACTA MATH, V161, P189
[10]  
GINDIKIN SG, 1968, HOMOGENEOUS KAHLER M, P3