ISOGEOMETRIC DISCRETE DIFFERENTIAL FORMS IN THREE DIMENSIONS

被引:142
作者
Buffa, A. [1 ]
Rivas, J. [2 ]
Sangalli, G. [3 ]
Vazquez, R. [1 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
[2] Univ Basque Country, Dept Matemat, Leioa 48940, Spain
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
isogeometric analysis; differential forms; Maxwell equations; ELEMENT EXTERIOR CALCULUS; FINITE-ELEMENTS; MAXWELL EQUATIONS; APPROXIMATION; REFINEMENT; STABILITY; SPLINES; VERSION; NURBS;
D O I
10.1137/100786708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of isogeometric analysis (IGA) was first applied to the approximation of Maxwell equations in [A. Buffa, G. Sangalli, and R. Vazquez, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1143-1152]. The method is based on the construction of suitable B-spline spaces such that they verify a De Rham diagram. Its main advantages are that the geometry is described exactly with few elements, and the computed solutions are smoother than those provided by finite elements. In this paper we develop the theoretical background to the approximation of vector fields in IGA. The key point of our analysis is the definition of suitable projectors that render the diagram commutative. The theory is then applied to the numerical approximation of Maxwell source problems and eigenproblems, and numerical results showing the good behavior of the scheme are also presented.
引用
收藏
页码:818 / 844
页数:27
相关论文
共 32 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
[Anonymous], 2001, PRACTICAL GUIDE SPLI
[3]  
[Anonymous], 2007, CAMBRIDGE MATH LIB
[4]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[5]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[6]   A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Buffa, A. ;
Lovadina, C. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :160-172
[7]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[8]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[9]   DISCRETE COMPACTNESS FOR THE p-VERSION OF DISCRETE DIFFERENTIAL FORMS [J].
Boffi, Daniele ;
Costabel, Martin ;
Dauge, Monique ;
Demkowicz, Leszek ;
Hiptmair, Ralf .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) :135-158
[10]   Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations [J].
Buffa, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) :1-18