Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror

被引:58
作者
Gebski, M. [1 ]
Dems, M. [1 ]
Szerling, A. [2 ]
Motyka, M. [3 ]
Marona, L. [4 ]
Kruszka, R. [2 ]
Urbanczyk, D. [2 ]
Walczakowski, M. [5 ]
Palka, N. [5 ]
Wojcik-Jedlinska, A. [2 ]
Wang, Q. J. [6 ,7 ]
Zhang, D. H. [6 ]
Bugajski, M. [2 ]
Wasiak, M. [1 ]
Czyszanowski, T. [1 ]
机构
[1] Lodz Univ Technol, Inst Phys, Photon Grp, PL-90924 Lodz, Poland
[2] Inst Electr Mat Technol, PL-02668 Warsaw, Poland
[3] Wroclaw Univ Technol, Dept Expt Phys, Lab Opt Spect Nanostruct, PL-50370 Wroclaw, Poland
[4] Inst High Pressure Phys, PL-01142 Warsaw, Poland
[5] Mil Acad Sci, PL-00908 Warsaw 49, Poland
[6] Nanyang Technol Univ, Photon Ctr Excellence OPTIMUS, Sch Elect & Elect Engn, Singapore 639798, Singapore
[7] Nanyang Technol Univ, CDPT, Sch Phys & Math Sci, Singapore 637371, Singapore
关键词
SURFACE-EMITTING LASER; DIFFRACTION GRATINGS; INTEGRATION;
D O I
10.1364/OE.23.011674
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present an extensive theoretical and numerical analysis of monolithic high-index contrast grating, facilitating simple manufacture of compact mirrors for very broad spectrum of vertical-cavity surface-emitting lasers (VCSELs) emitting from ultraviolet to mid-infrared. We provide the theoretical background explaining the phenomenon of high reflectance in monolithic subwavelength gratings. In addition, by using a three-dimensional, fully vectorial optical model, verified by comparison with the experiment, we investigate the optimal parameters of high-index contrast grating enabling more than 99.99% reflectance in the diversity of photonic materials and in the broad range of wavelengths. (C) 2015 Optical Society of America
引用
收藏
页码:11674 / 11686
页数:13
相关论文
共 27 条
[1]  
Adachi S., 1993, PROPERTIES ALUMINIUM
[2]  
Adachi S., 1999, CUBIC BORON NITRIDE
[3]   High-contrast gratings for integrated optoelectronics [J].
Chang-Hasnain, Connie J. ;
Yang, Weijian .
ADVANCES IN OPTICS AND PHOTONICS, 2012, 4 (03) :379-440
[4]   Subwavelength grating-mirror VCSEL with a thin oxide gap [J].
Chung, Il-Sung ;
Mork, Jesper ;
Gilet, Philippe ;
Chelnokov, Alexei .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (1-4) :105-107
[5]   Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate [J].
Cosendey, Gatien ;
Castiglia, Antonino ;
Rossbach, Georg ;
Carlin, Jean-Francois ;
Grandjean, Nicolas .
APPLIED PHYSICS LETTERS, 2012, 101 (15)
[6]   Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL [J].
Czyszanowski, T. ;
Dems, M. ;
Thienpont, H. ;
Panajotov, K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (08)
[7]   Spatial-Mode Discrimination in Guided and Antiguided Arrays of Long-Wavelength VCSELs [J].
Czyszanowski, Tomasz ;
Sarzala, Robert P. ;
Dems, Maciej ;
Walczak, Jaroslaw ;
Wasiak, Michal ;
Nakwaski, Wlodzimierz ;
Iakovlev, Vladimir ;
Volet, Nicolas ;
Kapon, Eli .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (05)
[8]   Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs [J].
Dems, M. .
OPTO-ELECTRONICS REVIEW, 2011, 19 (03) :340-345
[9]   The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves) [J].
Fano, U .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1941, 31 (03) :213-222
[10]   Transverse mode control in high-contrast grating VCSELs [J].
Gebski, Marcin ;
Kuzior, Olga ;
Dems, Maciej ;
Wasiak, Michal ;
Xie, Y. Y. ;
Xu, Z. J. ;
Wang, Qi Jie ;
Zhang, Dao Hua ;
Czyszanowski, Tomasz .
OPTICS EXPRESS, 2014, 22 (17) :20954-20963