On filtering and estimation of a threshold stochastic volatility model

被引:8
作者
Elliott, Robert J. [2 ,3 ]
Liew, Chuin Ching [4 ]
Siu, Tak Kuen [1 ]
机构
[1] Macquarie Univ, Fac Business & Econ, Dept Appl Finance & Actuarial Studies, Sydney, NSW 2109, Australia
[2] Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, Canada
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
Stochastic volatility; Threshold principle; Filtering; Change of measures; Reference probability; EM algorithm; CURRENCY OPTIONS; VARIANCE; LEVERAGE; PRICES;
D O I
10.1016/j.amc.2011.05.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a nonlinear filter and the corresponding filter-based estimates for a threshold autoregressive stochastic volatility (TARSV) model. Using the technique of a reference probability measure, we derive a nonlinear filter for the hidden volatility and related quantities. The filter-based estimates for the unknown parameters are then obtained from the EM algorithm. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 50 条
[31]   Estimating stochastic volatility via filtering for the micromovement of asset prices [J].
Zeng, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (03) :338-348
[32]   STOCHASTIC VOLATILITY WITH REGIME SWITCHING AND UNCERTAIN NOISE: FILTERING WITH SUB-LINEAR EXPECTATIONS [J].
Elliott, Robert J. ;
Siu, Tak Kuen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (01) :59-81
[33]   Bayesian estimation of the stochastic volatility model with double exponential jumps [J].
Li, Jinzhi .
REVIEW OF DERIVATIVES RESEARCH, 2021, 24 (02) :157-172
[34]   A new variant of estimation approach to asymmetric stochastic volatility model [J].
Men, Zhongxian ;
Wirjanto, Tony S. .
QUANTITATIVE FINANCE AND ECONOMICS, 2018, 2 (02) :325-347
[35]   Bayesian estimation of the stochastic volatility model with double exponential jumps [J].
Jinzhi Li .
Review of Derivatives Research, 2021, 24 :157-172
[36]   Estimation of the stochastic volatility model by the empirical characteristic function method [J].
Knight, JL ;
Satchell, SE ;
Yu, J .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2002, 44 (03) :319-335
[37]   Bayesian estimation of an extended local scale stochastic volatility model [J].
Deschamps, Philippe J. .
JOURNAL OF ECONOMETRICS, 2011, 162 (02) :369-382
[38]   Integrated nested Laplace approximations for threshold stochastic volatility models [J].
Bermudez, P. de Zea ;
Marin, J. Miguel ;
Rue, Havard ;
Veiga, Helena .
ECONOMETRICS AND STATISTICS, 2024, 30 :15-35
[39]   Volatility filtering in estimation of kurtosis (and variance) [J].
Anatolyev, Stanislav .
DEPENDENCE MODELING, 2019, 7 (01) :1-23
[40]   Filtering and identification of Heston's stochastic volatility model and its market risk [J].
Aihara, ShinIchi ;
Bagchi, Arunabha .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2006, 30 (12) :2363-2388