A mean field equation on a torus:: One-dimensional symmetry of solutions

被引:11
作者
Cabré, X
Lucia, M
Sanchón, M
机构
[1] Inst Catalana Recerca & Estudis Avancats, Dept Matemat Aplicada 1, Barcelona 08028, Spain
[2] Univ Politecn Cataluna, E-08028 Barcelona, Spain
[3] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ USA
[4] Univ Politecn Cataluna, Dept Matemat Aplicada 1, Barcelona, Spain
关键词
Bol's inequality; conformal radius; mean field equations; one-dimensional symmetry; periodic solutions;
D O I
10.1080/03605300500258857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the equation [GRAPHICS] for u is an element of E , where E = {u is an element of H-1 (Omega(epsilon)): u is doubly periodic, integral(Omega epsilon) u = 0} and Omega(epsilon) is a rectangle of R-2 with side lengths 1/epsilon and 1, 0 < epsilon <= 1. We establish that every solution depends only on the x -variable when lambda <= lambda*(epsilon), where lambda*(epsilon) is an explicit positive constant depending on the maximum conformal radius of the rectangle. As a consequence, we obtain an explicit range of parameters epsilon and lambda in which every solution is identically zero. This range is optimal for epsilon <= 1/2.
引用
收藏
页码:1315 / 1330
页数:16
相关论文
共 50 条
  • [31] A note on one-dimensional symmetry for Hamilton-Jacobi equations with extremal Pucci operators and application to Bernstein type estimate
    Fuentes, Rodrigo
    Quaas, Alexander
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (03):
  • [32] Uniqueness of bubbling solutions of mean field equations
    Bartolucci, Daniele
    Jevnikar, Aleks
    Lee, Youngae
    Yang, Wen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 : 78 - 126
  • [33] Symmetry reductions and exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation
    Wang Zhen-Li
    Liu Xi-Qiang
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (01): : 3 - 16
  • [34] Existence of global solutions for a class of vector fields on the three-dimensional torus
    Bergamasco, Adalberto P.
    Dattori da Silva, Paulo L.
    Gonzalez, Rafael B.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 148 : 53 - 76
  • [35] An approximate solution for one-dimensional weakly nonlinear oscilations
    Marinca, V
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2002, 3 (02) : 107 - 120
  • [36] Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument
    Li, Jin
    Luo, Jianlin
    Cai, Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [37] Periodic solutions for prescribed mean curvature Lienard equation with a deviating argument
    Feng, Meiqiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1216 - 1223
  • [38] Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument
    Jin Li
    Jianlin Luo
    Yun Cai
    Advances in Difference Equations, 2013
  • [39] Approximate Stabilization of One-dimensional Schrodinger Equations in Inhomogeneous Media
    Zu, Jian
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (03) : 758 - 768
  • [40] Lie Symmetry Analysis, Particular Solutions and Conservation Laws of Benjiamin Ono Equation
    Wang, Zhenli
    Sun, Liangji
    Hua, Rui
    Zhang, Lihua
    Wang, Haifeng
    SYMMETRY-BASEL, 2022, 14 (07):