A mean field equation on a torus:: One-dimensional symmetry of solutions

被引:11
作者
Cabré, X
Lucia, M
Sanchón, M
机构
[1] Inst Catalana Recerca & Estudis Avancats, Dept Matemat Aplicada 1, Barcelona 08028, Spain
[2] Univ Politecn Cataluna, E-08028 Barcelona, Spain
[3] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ USA
[4] Univ Politecn Cataluna, Dept Matemat Aplicada 1, Barcelona, Spain
关键词
Bol's inequality; conformal radius; mean field equations; one-dimensional symmetry; periodic solutions;
D O I
10.1080/03605300500258857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the equation [GRAPHICS] for u is an element of E , where E = {u is an element of H-1 (Omega(epsilon)): u is doubly periodic, integral(Omega epsilon) u = 0} and Omega(epsilon) is a rectangle of R-2 with side lengths 1/epsilon and 1, 0 < epsilon <= 1. We establish that every solution depends only on the x -variable when lambda <= lambda*(epsilon), where lambda*(epsilon) is an explicit positive constant depending on the maximum conformal radius of the rectangle. As a consequence, we obtain an explicit range of parameters epsilon and lambda in which every solution is identically zero. This range is optimal for epsilon <= 1/2.
引用
收藏
页码:1315 / 1330
页数:16
相关论文
共 23 条
[1]   MEAN-VALUE THEOREMS FOR FUNCTIONS SATISFYING INEQUALITY DELTA-MU+KEMU-]=O [J].
BANDLE, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1973, 51 (01) :70-84
[2]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[3]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (03) :501-525
[4]   Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces [J].
Chen, CC ;
Lin, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (06) :728-771
[5]  
Ding W., 1997, Asian J. Math., V1, P230
[6]   An analysis of the two-vortex case in the Chern-Simons Higgs model [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Wang, GF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (01) :87-97
[7]  
Dunne G, 1996, LECT NOTES PHYS, V36
[8]   GEODESIC PARALLEL COORDINATES IN LARGE [J].
HARTMAN, P .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (04) :705-&
[9]   MULTIVORTEX SOLUTIONS OF THE ABELIAN CHERN-SIMONS-HIGGS THEORY [J].
HONG, JY ;
KIM, YB ;
PAC, PY .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2230-2233
[10]   SELF-DUAL CHERN-SIMONS VORTICES [J].
JACKIW, R ;
WEINBERG, EJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2234-2237