Density-functional theory on graphs

被引:24
作者
Penz, Markus [1 ]
van Leeuwen, Robert [2 ]
机构
[1] Univ Innsbruck, Dept Math, Innsbruck, Austria
[2] Univ Jyvaskyla, Nanosci Ctr, Dept Phys, Jyvaskyla, Finland
基金
奥地利科学基金会; 芬兰科学院;
关键词
ELECTRON-DENSITIES; V-REPRESENTABILITY; LATTICE; EIGENVALUES; POTENTIALS; ORBITALS;
D O I
10.1063/5.0074249
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The principles of density-functional theory are studied for finite lattice systems represented by graphs. Surprisingly, the fundamental Hohenberg-Kohn theorem is found void, in general, while many insights into the topological structure of the density-potential mapping can be won. We give precise conditions for a ground state to be uniquely v-representable and are able to prove that this property holds for almost all densities. A set of examples illustrates the theory and demonstrates the non-convexity of the pure-state constrained-search functional.
引用
收藏
页数:26
相关论文
共 67 条
[1]  
[Anonymous], 2003, Graduate Texts in Mathematics
[2]  
[Anonymous], 1988, Nonnegative Matrices
[3]   Approximate and exact nodes of fermionic wavefunctions: Coordinate transformations and topologies [J].
Bajdich, M ;
Mitas, L ;
Drobny, G ;
Wagner, LK .
PHYSICAL REVIEW B, 2005, 72 (07)
[4]  
Baumgartel H, 1985, Analytic Perturbation Theory for Matrices and Operators
[5]  
Belardo F., 2019, ARXIV190704349MATHCO
[6]  
Biyikoglu T., 2007, LAPLACIAN EIGENVECTO
[7]   Nonuniqueness of the potentials of spin-density-functional theory [J].
Capelle, K ;
Vignale, G .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5546-5549
[8]   The Hubbard dimer: a density functional case study of a many-body problem [J].
Carrascal, D. J. ;
Ferrer, J. ;
Smith, J. C. ;
Burke, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (39)
[9]   FERMION NODES [J].
CEPERLEY, DM .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (5-6) :1237-1267
[10]   DENSITY FUNCTIONAL-APPROACH TO QUANTUM-LATTICE SYSTEMS [J].
CHAYES, JT ;
CHAYES, L ;
RUSKAI, MB .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (3-4) :497-518