Qualitative analysis of the (N+1)-body ring problem

被引:18
作者
Barrio, Roberto [1 ]
Blesa, Fernando [2 ]
Serrano, Sergio [3 ]
机构
[1] Univ Zaragoza, Dept Math Applicada, GME, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Fis Aplicada, GME, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Dept Informat & Ingn Sistemas, GME, E-50015 Zaragoza, Spain
关键词
D O I
10.1016/j.chaos.2006.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a complete study of the (N + 1)-body ring problem. In particular, we review and describe the evolution of the equilibrium points, their stability, their bifurcations, the zero velocity curves and we provide new techniques that give new views to this classical problem. Some of these techniques are the OFLI2 (a Chaos Indicator given in [Barrio R. Sensitivity tools vs. Poincare sections. Chaos, Solitons & Fractals 2005;25(3):711-26; Barrio R. Painting chaos: a gallery of sensitivity plots of classical problems. Int J Bifur Chaos Appl Sci Eng [in press]]) and the Crash Test [Nagler J. Crash test for the restricted three-body problem. Phys Rev E (3) 2005;71(2):026227, 11; Nagler J. Crash test for the Copenhagen problem. Phys Rev E (3) 2004;69(6):066218, 6]. With the OFLI2 we have studied the chaoticity of the orbits and with the Crash Test we have classified the orbits as bounded, escape or collisions. Finally, we have performed a systematic search of symmetric periodic orbits of the system, locating much more orbits that in previous studies of other authors. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1067 / 1088
页数:22
相关论文
共 24 条
[1]   Bifurcations and equilibria in the extended N-body ring problem [J].
Arribas, M ;
Elipe, A .
MECHANICS RESEARCH COMMUNICATIONS, 2004, 31 (01) :1-8
[2]   Restricted N+1-body problem: existence and stability of relative equilibria [J].
Bang, D ;
Elmabsout, B .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2004, 89 (04) :305-318
[3]   Sensitivity tools vs. Poincare sections [J].
Barrio, R .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :711-726
[4]   VSVO formulation of the Taylor method for the numerical solution of ODEs [J].
Barrio, R ;
Blesa, F ;
Lara, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) :93-111
[5]   Performance of the Taylor series method for ODEs/DAEs [J].
Barrio, R .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :525-545
[6]  
BARRIO R, IN PRESS INT J BIFUR
[7]  
BARRIO R, 2006, SIAM J SCI COMPUT, P1629
[8]  
BARRIO R, SYSTEMATIC SEARCH SY
[9]   ALGORITHM WITH GUARANTEED CONVERGENCE FOR FINDING A ZERO OF A FUNCTION [J].
BRENT, RP .
COMPUTER JOURNAL, 1971, 14 (04) :422-&
[10]   Simple tools to study global dynamics in non-axisymmetric galactic potentials -: I [J].
Cincotta, PM ;
Simó, C .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 2000, 147 (02) :205-228