A Hierarchical Approach to Probabilistic Wind Power Forecasting

被引:0
作者
Gilbert, Ciaran [1 ]
Browell, Jethro [1 ]
McMillan, David [1 ]
机构
[1] Univ Strathclyde, Glasgow, Lanark, Scotland
来源
2018 IEEE INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS) | 2018年
基金
英国工程与自然科学研究理事会;
关键词
Wind power; probabilistic forecasting; hierarchical forecasting; forecasting; wind power integration; REGULARIZATION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper describes a method to generate improved probabilistic wind farm power forecasts in a hierarchical framework with the incorporation of production data from individual wind turbines. Wind power forms a natural hierarchy as generated electricity is aggregated from the individual turbine, to farm, to the regional level and so on. To forecast the wind farm power generation, a layered approach is proposed whereby deterministic forecasts from the lower layer (turbine level) are used as input features to an upper-level (wind farm) probabilistic model. In a case study at a utility scale wind farm it is shown that improvements in probabilistic forecast skill (CRPS) of 1.24% and 2.39% are obtainable when compared to two very competitive benchmarks based on direct forecasting of the wind farm power using Gradient Boosting Trees and an Analog Ensemble, respectively.
引用
收藏
页数:6
相关论文
共 50 条
[31]   A New Combinatory Approach for Wind Power Forecasting [J].
Abedinia, Oveis ;
Bagheri, Mehdi ;
Naderi, Mohammad Salay ;
Ghadimi, Noradin .
IEEE SYSTEMS JOURNAL, 2020, 14 (03) :4614-4625
[32]   Wind Power Forecasting Enhancement Utilizing Adaptive Quantile Function and CNN-LSTM: A Probabilistic Approach [J].
Abedinia, Oveis ;
Ghasemi-Marzbali, Ali ;
Shafiei, Mohammad ;
Sobhani, Behrooz ;
Gharehpetian, Gevork B. ;
Bagheri, Mehdi .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (03) :4446-4457
[33]   Probabilistic Forecasting of Solar Power: An Ensemble Learning Approach [J].
Mohammed, Azhar Ahmed ;
Yaqub, Waheeb ;
Aung, Zeyar .
INTELLIGENT DECISION TECHNOLOGIES, 2015, 39 :449-458
[34]   Short-Term Wind Power Forecasting Using a Double-Stage Hierarchical Hybrid GA-ANFIS Approach [J].
Eseye, Abinet Tesfaye ;
Zhang, Jianhua ;
Zheng, Dehua ;
Li, Han ;
Gan Jingfu .
2017 2ND IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2017), 2017, :499-503
[35]   Short-term Wind Power Forecasting Using a Double-stage Hierarchical Hybrid GA-ANN Approach [J].
Eseye, Abinet Tesfaye ;
Zhang, Jianhua ;
Zheng, Dehua ;
Ma, Hui ;
Gan Jingfu .
2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, :552-556
[36]   Short-term wind power forecasting using a double-stage hierarchical ANFIS approach for energy management in microgrids [J].
Dehua Zheng ;
Abinet Tesfaye Eseye ;
Jianhua Zhang ;
Han Li .
Protection and Control of Modern Power Systems, 2017, 2 (1)
[37]   Nonparametric Probabilistic Forecasting for Wind Power Generation Using Quadratic Spline Quantile Function and Autoregressive Recurrent Neural Network [J].
Wang, Ke ;
Zhang, Yao ;
Lin, Fan ;
Wang, Jianxue ;
Zhu, Morun .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2022, 13 (04) :1930-1943
[38]   A Novel Framework of Reservoir Computing for Deterministic and Probabilistic Wind Power Forecasting [J].
Wang, Jianzhou ;
Niu, Tong ;
Lu, Haiyan ;
Yang, Wendong ;
Du, Pei .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (01) :337-349
[39]   Aggregated wind power generation probabilistic forecasting based on particle filter [J].
Li, Pai ;
Guan, Xiaohong ;
Wu, Jiang .
ENERGY CONVERSION AND MANAGEMENT, 2015, 96 :579-587
[40]   Sparse online warped Gaussian process for wind power probabilistic forecasting [J].
Kou, Peng ;
Gao, Feng ;
Guan, Xiaohong .
APPLIED ENERGY, 2013, 108 :410-428