Nitrogen implantation into graphene oxide and reduced graphene oxides using radio frequency plasma treatment in microscale

被引:17
作者
Bertoti, Imre [1 ]
Farah, Shereen [2 ]
Bulatko, Anna [2 ]
Farkas, Attila [3 ]
Madarasz, Janos [4 ]
Mohai, Miklos [1 ]
Safran, Gyorgy [5 ]
Laszlo, Krisztina [2 ]
机构
[1] Eotvos Lorand Res Network, Inst Mat & Environm Chem, Res Ctr Nat Sci, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Phys Chem & Mat Sci, Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Organ Chem & Technol, Budapest, Hungary
[4] Budapest Univ Technol & Econ, Dept Inorgan & Analyt Chem, Budapest, Hungary
[5] Eotvos Lorand Res Network, Res Inst Tech Phys & Mat Sci, Budapest, Hungary
基金
欧盟地平线“2020”;
关键词
Graphene oxide (GO); Reduced GO; Plasma treatment; Ambient temperature; Surface modification; X-ray photoelectron spectroscopy (XPS); Stability; DOPED GRAPHENE; SURFACE MODIFICATION; RAMAN-SPECTRA; REDUCTION; GRAPHITE; SHEETS; FUNCTIONALIZATION; CHEMISTRY; THICKNESS; OXIDATION;
D O I
10.1016/j.carbon.2022.08.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solvent-free radiofrequency (RF) nitrogen plasma treatment was applied to incorporate nitrogen atoms in relatively high concentration. Graphene oxide (GO) and two reduced GOs of different O-content were used as target substrates to reveal the influence of the functional groups decorating the graphene lattice on the quantity and quality of nitrogen incorporation. Despite the relatively high oxygen content of the samples no N-O bonds develop but three kinds of different N-C bonds of very similar concentration are formed. Reduction of the GO removed the O-groups but did not heal the vacancies where N doping may occur. After two days the implanted N content drops, the N1 state (sp(2) N in pyridine ring, C-N-C) showing the least stability.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 67 条
[1]   Graphene-based multifunctional surface and structure gradients engineered by atmospheric plasma [J].
Alosaimi, Fiasal K. ;
Tung, Tran T. ;
Dao, Van-Duong ;
Huyen, Nguyen K. ;
Nine, Md J. ;
Hassan, Kamrul ;
Ma, Jun ;
Losic, Dusan .
APPLIED MATERIALS TODAY, 2022, 27
[2]   Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy [J].
Bertoti, Imre ;
Mohai, Miklos ;
Laszlo, Krisztina .
CARBON, 2015, 84 :185-196
[3]   Surface modification of multi-wall carbon nanotubes by nitrogen attachment [J].
Bertoti, Imre ;
Mohai, Ilona ;
Mohai, Miklos ;
Szepvoelgyi, Janos .
DIAMOND AND RELATED MATERIALS, 2011, 20 (07) :965-968
[4]  
Bragg WH, 1913, P R SOC LOND A-CONTA, V88, P428, DOI 10.1098/rspa.1913.0040
[5]  
Briggs D., 1992, High Resolution XPS of Organic polymers: The scienta ESCA300 Database, DOI DOI 10.1002/ADMA.19930051035
[6]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[7]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[8]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[9]   Reducing and multiple-element doping of graphene oxide using active screen plasma treatments [J].
Chen, Jian ;
Shi, Xiangru ;
Qi, Shaojun ;
Mohai, Miklos ;
Bertoti, Imre ;
Gao, Ying ;
Dong, Hanshan .
CARBON, 2015, 95 :338-346
[10]   The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide [J].
Claramunt, Sergi ;
Varea, Aida ;
Lopez-Diaz, David ;
Mercedes Velazquez, M. ;
Cornet, Albert ;
Cirera, Albert .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (18) :10123-10129