Duality and symmetry lost in solid mechanics

被引:2
|
作者
Bui, Huy Duong [1 ,2 ]
机构
[1] Ecole Polytech, Dept Mech, Lab Solid Mech, F-91128 Palaiseau, France
[2] Elect France, LAMSID, CNRS, F-92141 Clamart, France
来源
COMPTES RENDUS MECANIQUE | 2008年 / 336卷 / 1-2期
关键词
conservation laws; duality; symmetry loss; inverse problem;
D O I
10.1016/j.crme.2007.11.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Some conservation laws in Solids and Fracture Mechanics present a lack of symmetry between kinematic and dynamic variables. It is shown that Duality is the fight tool to re-establish the symmetry between equations and variables and to provide conservation laws of the pure divergence type which provide true path independent integrals. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically.
引用
收藏
页码:12 / 23
页数:12
相关论文
共 50 条
  • [1] ON DUALITY, SYMMETRY AND SYMMETRY LOST IN SOLID MECHANICS
    Duong, Bui Huy
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (03)
  • [2] Conservation laws, duality and symmetry loss in solid mechanics
    Huy Duong Bui
    International Journal of Fracture, 2007, 147 : 163 - 172
  • [3] Conservation laws, duality and symmetry loss in solid mechanics
    Bui, Huy Duong
    INTERNATIONAL JOURNAL OF FRACTURE, 2007, 147 (1-4) : 163 - 172
  • [4] Strong-weak coupling duality symmetry in quantum mechanics
    Dutra, ADS
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 481 - 483
  • [5] Duality, inverse problems and nonlinear problems in solid mechanics - Preface
    Leblond, Jean-Baptiste
    Markenscoff, Xanthippi
    COMPTES RENDUS MECANIQUE, 2008, 336 (1-2): : 3 - +
  • [6] DUALITY IN MECHANICS
    LECORBEILLER, P
    YEUNG, YW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1952, 24 (06): : 643 - 648
  • [7] On symmetry and duality
    Sebastian De Haro
    Jeremy Butterfield
    Synthese, 2021, 198 : 2973 - 3013
  • [8] On symmetry and duality
    De Haro, Sebastian
    Butterfield, Jeremy
    SYNTHESE, 2021, 198 (04) : 2973 - 3013
  • [9] DUALITY IN MECHANICS
    LECORBEILLER, P
    YEUNG, YW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1952, 24 (04): : 451 - 452
  • [10] Symmetry and degeneracy in quantum mechanics. Self-duality in finite spin systems
    Osacar, C.
    Pacheco, A. F.
    EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (04) : 891 - 899