Some asymptotic properties of solutions of a perturbed second order nonlinear difference equation

被引:0
|
作者
Graef, JR
Manuel, MMS
Spikes, PW
Thandapani, E
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Sacred Heart Coll, Dept Math, NAA 635601, Tamil Nadu, India
[3] Univ Madras, PG Ctr, Dept Math, Salem, Tamil Nadu, India
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors investigate asymptotic properties of solutions of the perturbed second order nonlinear difference equation Delta(a(n-1)psi(y(n-1))Delta y(n-1)) + Q(n, y(sigma(n))) = P(n, y(sigma(n)), Delta y(n)). Examples illustrating the necesssity of some of the hypotheses are included. AMS (MOS) subject classification: 39A10.
引用
收藏
页码:395 / 404
页数:10
相关论文
共 50 条
  • [41] Classification schemes for positive solutions of a second-order nonlinear difference equation
    Zhang, G
    Cheng, SS
    Gao, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) : 39 - 51
  • [42] Positive Solutions of a Second-Order Nonlinear Neutral Delay Difference Equation
    Liu, Zeqing
    Sun, Wei
    Ume, Jeong Sheok
    Kang, Shin Min
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [43] Asymptotic and oscillatory behavior of solutions of certain second-order nonlinear difference equations
    Peng, Mingshu
    Xu, Qianli
    Huang, Lihong
    Ge, Weigao
    Computers and Mathematics with Applications, 1999, 37 (03): : 9 - 18
  • [44] Asymptotic and oscillatory behavior of solutions of certain second-order nonlinear difference equations
    Peng, MS
    Xu, QL
    Huang, LH
    Ge, WG
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (03) : 9 - 18
  • [45] Asymptotic behavior of a second order nonlinear difference equations
    Wang, Lei
    Xu, Huazhong
    Fan, Yujun
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 99 - 101
  • [46] Asymptotic Properties of Solutions to Second-Order Difference Equations of Volterra Type
    Migda, Janusz
    Migda, Malgorzata
    Nockowska-Rosiak, Magdalena
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [47] ASYMPTOTIC PROPERTIES OF HOMOCLINIC SOLUTIONS OF SOME SINGULAR NONLINEAR DIFFERENTIAL EQUATION
    Rachunkova, Irena
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2011, 54 : 83 - 98
  • [48] On the oscillation of second-order perturbed nonlinear difference equations
    Sun, Y. G.
    Saker, S. H.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2006, 15 (3-4): : 537 - 547
  • [49] Oscillation of second-order perturbed nonlinear difference equations
    Saker, SH
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) : 305 - 324
  • [50] On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order
    Boni, TK
    ASYMPTOTIC ANALYSIS, 1999, 21 (3-4) : 187 - 208