FUZZY STABILITY OF A FUNCTIONAL EQUATION RELATED TO INNER PRODUCT SPACES

被引:0
作者
Jang, Sun Young [2 ]
Park, Choonkil [1 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
[2] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2011年 / 40卷 / 05期
基金
新加坡国家研究基金会;
关键词
Fuzzy Banach space; Functional equation related to inner product space; Generalized Hyers-Ulam stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fuzzy stability problems for the Cauchy quadratic functional equation and the Jensen quadratic functional equation in fuzzy Banach spaces have been investigated by Moslehian et al. Th. M. Rassias introduced the following equality Sigma(m)(i,j=1) parallel to xi - xj parallel to(2) = 2m Sigma(m)(i=1) parallel to x(i)parallel to(2), Sigma(m)(i=1) x(i) = 0, for a fixed integer m >= 3. By the above equality, we define the following functional equation (0.1) Sigma(m)(i,j=1) f(x(i) - x(j)) = 2m Sigma(m)(i=1) f(x(i)), Sigma(m)(i=1) x(i) = 0 In this paper, we prove the generalized Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach spaces.
引用
收藏
页码:711 / 723
页数:13
相关论文
共 42 条
  • [1] [Anonymous], 1998, Stability of Functional Equations in Several Variables
  • [2] [Anonymous], 2002, FUNCTIONAL EQUATIONS
  • [3] Aoki T., 1950, J. Math. Soc. Japan, V2, P64
  • [4] Fuzzy bounded linear operators
    Bag, T
    Samanta, SK
    [J]. FUZZY SETS AND SYSTEMS, 2005, 151 (03) : 513 - 547
  • [5] Bag T., 2003, J FUZZY MATH, V11, P687
  • [6] On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces
    Baktash, E.
    Cho, Y. J.
    Jalili, M.
    Saadati, R.
    Vaezpour, S. M.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [7] Cheng S. C., 1994, B CALCUTTA MATH SOC, V86, P429
  • [8] Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]
  • [9] ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES
    CZERWIK, S
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 : 59 - 64
  • [10] Czerwik S., 1994, Stability of Mappings of Hyers-Ulam Type, P81