Low-Power Design of a Self-powered Piezoelectric Energy Harvesting System With Maximum Power Point Tracking

被引:156
作者
Kong, Na [1 ]
Ha, Dong Sam [1 ]
机构
[1] Virginia Tech, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
关键词
Impedance matching; piezoelectric transducers; power conditioning; power conversion; pulse frequency modulation; CIRCUIT; CONVERTER; OPTIMIZATION; RECTIFIER;
D O I
10.1109/TPEL.2011.2172960
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A low-power energy harvesting system targeting to harvest several milliwatts from vibration is presented in this paper. Several low-power design schemes to reduce power dissipation of the proposed system are described, and sources of power loss are analyzed to improve the power efficiency. A discontinuous conduction mode (DCM) flyback converter with the constant on-time modulation is adopted for our system. The DCM operation of a flyback converter is chosen as for maximum power point tracking (MPPT) to be implemented with a single current sensor. The constant on-time modulation lowers the clock frequency of the controller by more than an order of magnitude for our system, which reduces the dynamic power dissipation of the controller. MPPT, executed by amicrocontroller unit (MCU), is achieved through dynamic resistive matching, and the MPPT is executed at intermittent time intervals due to a relatively slow change of the operating condition. When MPPT is not active, the MCU operates at a lower clock frequency to save power. Experimental results indicate that the proposed system harvests up to 8.4 mW power under 0.5-g base acceleration with four parallel piezoelectric cantilevers and achieves 72% power efficiency around the resonant frequency of 47 Hz.
引用
收藏
页码:2298 / 2308
页数:11
相关论文
共 31 条
[1]   An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes [J].
Alippi, Cesare ;
Galperti, Cristian .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (06) :1742-1750
[2]   A review of power harvesting using piezoelectric materials (2003-2006) [J].
Anton, Steven R. ;
Sodano, Henry A. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (03) :R1-R21
[3]   Single crystals and nonlinear process for outstanding vibration-powered electrical generators [J].
Laboratoire de Génie Electrique et Ferroélectricité, INSA de Lyon, 69621 Villeurbanne, France ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
IEEE Trans Ultrason Ferroelectr Freq Control, 2006, 4 (673-683) :673-683
[4]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[5]  
Dongwon Kwon, 2010, 2010 IEEE International Solid-State Circuits Conference (ISSCC), P494, DOI 10.1109/ISSCC.2010.5433867
[6]   An Efficient AC-DC Step-Up Converter for Low-Voltage Energy Harvesting [J].
Dwari, Suman ;
Parsa, Leila .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (08) :2188-2199
[7]   A General Equivalent Circuit Model for Piezoelectric Generators [J].
Elvin, Niell G. ;
Elvin, Alex A. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (01) :3-9
[8]  
ERICKSON W., 2001, FUNDAMENTALS POWER E, V2
[9]   An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2009, 18 (02)
[10]   Comparison of photovoltaic array maximum power point tracking techniques [J].
Esram, Trishan ;
Chapman, Patrick L. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (02) :439-449