Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour

被引:122
作者
Frith, Jessica E. [1 ]
Mills, Richard J. [1 ]
Cooper-White, Justin J. [1 ,2 ]
机构
[1] Univ Queensland, Tissue Engn & Microfluid Lab, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Mesenchymal stem cell; RGD peptide; Cell morphology; Differentiation; Nanopatterning; BINDING PROTEIN RHO; OSTEOGENIC DIFFERENTIATION; FOCAL ADHESIONS; INTEGRIN LIGANDS; COLLAGEN-I; RGD; ACTIN; CYTOSKELETON; ACTIVATION; SURFACES;
D O I
10.1242/jcs.087916
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mesenchymal stem cells (MSCs) have attracted great interest in recent years for tissue engineering and regenerative medicine applications due to their ease of isolation and multipotent differentiation capacity. In the past, MSC research has focussed on the effects of soluble cues, such as growth factors and cytokines; however, there is now increasing interest in understanding how parameters such as substrate modulus, specific extracellular matrix (ECM) components and the ways in which these are presented to the cell can influence MSC properties. Here we use surfaces of self-assembled maleimide-functionalized polystyrene-block-poly(ethylene oxide) copolymers (PS-PEO-Ma) to investigate how the spatial arrangement of cell adhesion ligands affects MSC behaviour. By changing the ratio of PS-PEO-Ma in mixtures of block copolymer and polystyrene homopolymer, we can create surfaces with lateral spacing of the PEO-Ma domains ranging from 34 to 62 nm. Through subsequent binding of cysteine GRGDS peptides to the maleimide-terminated end of the PEO chains in each of these domains, we are able to present tailored surfaces of controlled lateral spacing of RGD (arginine-glycine-aspartic acid) peptides to MSCs. We demonstrate that adhesion of MSCs to the RGD-functionalized block-copolymer surfaces is through specific attachment to the presented RGD motif and that this is mediated by alpha 5, V1, beta 1 and beta 3 integrins. We show that as the lateral spacing of the peptides is increased, the ability of the MSCs to spread is diminished and that the morphology changes from well-spread cells with normal fibroblastic morphology and defined stress-fibres, to less-spread cells with numerous cell protrusions and few stress fibres. In addition, the ability of MSCs to form mature focal adhesions is reduced on substrates with increased lateral spacing. Finally, we investigate differentiation and use qRT-PCR determination of gene expression levels and a quantitative alkaline phosphatase assay to show that MSC osteogcnesis is reduced on surfaces with increased lateral spacing while adipogenic differentiation is increased. We show here, for the first time, that the lateral spacing of adhesion peptides affects human MSC (hMSC) properties and might therefore be a useful parameter with which to modify hMSC behaviour in future tissue engineering strategies.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 54 条
[1]   Activation of integrin function by nanopatterned adhesive interfaces [J].
Arnold, M ;
Cavalcanti-Adam, EA ;
Glass, R ;
Blümmel, J ;
Eck, W ;
Kantlehner, M ;
Kessler, H ;
Spatz, JP .
CHEMPHYSCHEM, 2004, 5 (03) :383-388
[2]   Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing [J].
Arnold, Marco ;
Hirschfeld-Warneken, Vera C. ;
Lohmueller, Theobald ;
Heil, Patrick ;
Bluemmel, Jacques ;
Cavalcanti-Adam, Elisabetta A. ;
Lopez-Garcia, Monica ;
Walther, Paul ;
Kessler, Horst ;
Geiger, Benjamin ;
Spatz, Joachim P. .
NANO LETTERS, 2008, 8 (07) :2063-2069
[3]   Cell interactions with hierarchically structured nano-patterned adhesive surfaces [J].
Arnold, Marco ;
Schwieder, Marco ;
Bluemmel, Jacques ;
Cavalcanti-Adam, Elisabetta A. ;
Lopez-Garcia, Monica ;
Kessler, Horst ;
Geiger, Benjamin ;
Spatz, Joachim P. .
SOFT MATTER, 2009, 5 (01) :72-77
[4]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[5]   The influence of substrate creep on mesenchymal stem cell behaviour and phenotype [J].
Cameron, Andrew R. ;
Frith, Jessica E. ;
Cooper-White, Justin J. .
BIOMATERIALS, 2011, 32 (26) :5979-5993
[6]   Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly [J].
Cavalcanti-Adam, EA ;
Micoulet, A ;
Blümmel, J ;
Auernheimer, J ;
Kessler, H ;
Spatz, JP .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2006, 85 (3-4) :219-224
[7]   Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands [J].
Cavalcanti-Adam, Elisabetta Ada ;
Volberg, Tova ;
Micoulet, Alexandre ;
Kessler, Horst ;
Geiger, Benjamin ;
Spatz, Joachim Pius .
BIOPHYSICAL JOURNAL, 2007, 92 (08) :2964-2974
[8]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[9]   Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner [J].
Choi, Colin K. ;
Vicente-Manzanares, Miguel ;
Zareno, Jessica ;
Whitmore, Leanna A. ;
Mogilner, Alex ;
Horwitz, Alan Rick .
NATURE CELL BIOLOGY, 2008, 10 (09) :1039-U36
[10]   The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces [J].
Chollet, Celine ;
Chanseau, Christel ;
Remy, Murielle ;
Guignandon, Alain ;
Bareille, Reine ;
Labrugere, Christine ;
Bordenave, Laurence ;
Durrieu, Marie-C. .
BIOMATERIALS, 2009, 30 (05) :711-720