Eigenvalue Density of the Non-Hermitian Wilson Dirac Operator

被引:20
作者
Kieburg, Mario [1 ]
Verbaarschot, Jacobus J. M. [1 ]
Zafeiropoulos, Savvas [1 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
关键词
RANDOM-MATRIX THEORY; LIMIT; QCD;
D O I
10.1103/PhysRevLett.108.022001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the lattice spacing dependence of the eigenvalue density of the non-Hermitian Wilson Dirac operator in the epsilon domain. The starting point is the joint probability density of the corresponding random matrix theory. In addition to the density of the complex eigenvalues we also obtain the density of the real eigenvalues separately for positive and negative chiralities as well as an explicit analytical expression for the number of additional real modes.
引用
收藏
页数:5
相关论文
共 25 条
  • [1] Matrix models and QCD with chemical potential
    Akeman, G.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (06): : 1077 - 1122
  • [2] Spectrum of the Wilson Dirac operator at finite lattice spacings
    Akemann, G.
    Damgaard, P. H.
    Splittorff, K.
    Verbaarschot, J. J. M.
    [J]. PHYSICAL REVIEW D, 2011, 83 (08):
  • [3] Universality of random matrices in the microscopic limit and the Dirac operator spectrum
    Akemann, G
    Damgaard, PH
    Magnea, U
    Nishigaki, S
    [J]. NUCLEAR PHYSICS B, 1997, 487 (03) : 721 - 738
  • [4] Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices
    Akemann, G.
    Kieburg, M.
    Phillips, M. J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (37)
  • [5] Akemann G., 2010, P SCI LATTICE2010, V2010, P079
  • [6] Akemann G, 2010, P SCI ATTICE2010, VLAT2010, P092
  • [7] Integrable structure of Ginibre's ensemble of real random matrices and a Pfaffian integration theorem
    Akemann, Gernot
    Kanzieper, Eugene
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (5-6) : 1159 - 1231
  • [8] Random matrix theory for the Hermitian Wilson Dirac operator and the chGUE-GUE transition
    Akemann, Gernot
    Nagao, Taro
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [9] Microscopic Spectrum of the Wilson Dirac Operator
    Damgaard, P. H.
    Splittorff, K.
    Verbaarschot, J. J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (16)
  • [10] Del Debbio L, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/02/011