Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes

被引:177
作者
El-Tarabily, Khaled A. [1 ]
机构
[1] United Arab Emirates Univ, Fac Sci, Dept Biol, Al Ain 17551, U Arab Emirates
关键词
actinomycetes; auxins; biological fertilizers; ethylene; plant growth-promoting rhizobacteria; rhizosphere competence; soil fertility;
D O I
10.1007/s11104-008-9616-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The ability of streptomycete actinomycetes to promote growth of tomato through the production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase was evaluated under gnotobiotic and greenhouse conditions. To achieve this, 64 isolates of Streptomyces spp. obtained from a tomato rhizosphere in the United Arab Emirates were initially selected for their ability to produce ACC deaminase as well as indole-3-acetic acid (IAA) and subsequently for their rhizosphere competence as root colonizers. Of the two selected ACC deaminase-producing isolates showing exceptional rhizosphere competence, S. filipinensis no. 15 produced both ACC deaminase and IAA, whilst S. atrovirens no. 26 did not produce IAA. Under greenhouse conditions, the application of S. filipinensis no. 15 or S. atrovirens no. 26 resulted in the reduction of the endogenous levels of ACC, the immediate precursor of ethylene, in both roots and shoots and increased plant growth. Plant growth promotion was most pronounced in the presence of S. filipinensis no. 15 compared to S. atrovirens no. 26. This relative superiority in performance shows the advantage conferred to S. filipinensis no. 15 due to its ability to produce both IAA and ACC deaminase. In comparison, an ACC deaminase-producing isolate of S. albovinaceus no. 41 which was neither rhizosphere-competent nor capable of producing IAA, failed to promote plant growth compared to S. filipinensis no. 15 or S. atrovirens no. 26 although the growth promotion obtained by S. albovinaceus no. 41 was significant compared to control. The application of S. globosus no. 8, which was not rhizosphere-competent and did not produce detectable levels of ACC deaminase or IAA did not promote plant growth. These results indicate the importance of rhizosphere competence. In conclusion I report the production of ACC deaminase by streptomycete actinomycetes and its ability to enhance plant growth through reduction in the in planta levels of endogenous ACC and the consequent lowering of endogenous ethylene levels in plant tissues.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 54 条
[1]   RHIZOSPHERE COMPETENCE OF TRICHODERMA-HARZIANUM [J].
AHMAD, JS ;
BAKER, R .
PHYTOPATHOLOGY, 1987, 77 (02) :182-189
[2]   Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) [J].
Belimov, AA ;
Hontzeas, N ;
Safronova, VI ;
Demchinskaya, SV ;
Piluzza, G ;
Bullitta, S ;
Glick, BR .
SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (02) :241-250
[3]   Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase [J].
Belimov, AA ;
Safronova, VI ;
Sergeyeva, TA ;
Egorova, TN ;
Matveyeva, VA ;
Tsyganov, VE ;
Borisov, AY ;
Tikhonovich, IA ;
Kluge, C ;
Preisfeld, A ;
Dietz, KJ ;
Stepanok, VV .
CANADIAN JOURNAL OF MICROBIOLOGY, 2001, 47 (07) :642-652
[4]   Root colonization by inoculated plant growth-promoting rhizobacteria [J].
Benizri, E ;
Baudoin, E ;
Guckert, A .
BIOCONTROL SCIENCE AND TECHNOLOGY, 2001, 11 (05) :557-574
[5]   Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.) [J].
Bertrand, H ;
Plassard, C ;
Pinochet, X ;
Touraine, B ;
Normand, P ;
Cleyet-Marel, JC .
CANADIAN JOURNAL OF MICROBIOLOGY, 2000, 46 (03) :229-236
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   INOCULATION OF CONIFER SEED WITH PLANT-GROWTH PROMOTING BACILLUS STRAINS CAUSES INCREASED SEEDLING EMERGENCE AND BIOMASS [J].
CHANWAY, CP ;
RADLEY, RA ;
HOLL, FB .
SOIL BIOLOGY & BIOCHEMISTRY, 1991, 23 (06) :575-580
[8]  
Cross T., 1989, Bergey's Manual of Systematic Bacteriology, V4, P2340
[9]   THE ISOLATION OF YEASTS FROM SOIL [J].
DIMENNA, ME .
JOURNAL OF GENERAL MICROBIOLOGY, 1957, 17 (03) :678-688
[10]   EXPERIMENTS WITH SOME MICROORGANISMS WHICH UTILIZE ETHANE AND HYDROGEN [J].
DWORKIN, M ;
FOSTER, JW .
JOURNAL OF BACTERIOLOGY, 1958, 75 (05) :592-603