Correlation functions, free energies, and magnetizations in the two-dimensional random-field Ising model

被引:3
作者
de Queiroz, SLA
Stinchcombe, RB
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Oxford, Dept Phys, Oxford OX1 3NP, England
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 03期
关键词
D O I
10.1103/PhysRevE.64.036117
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Transfer-matrix methods are used to calculate spin-spin correlation functions (G), Helmholtz free energies (f) and magnetizations (m) in the two-dimensional random-field Ising model close to the zero-field bulk critical temperature T-c (0), on long strips of width L = 3 - 18 sites, for binary field distributions. Analysis of the probability distributions of G for varying spin-spin distances R shows that describing the decay of their averaged values by effective correlation lengths is a valid procedure only for not very large R. Connections between field and correlation function distributions at high temperatures are established, yielding approximate analytical expressions for the latter, which are used for computation of the corresponding structure factor. It is shown that, for fixed R/L, the fractional widths of correlation-function distributions saturate asymptotically with L-2.2. Considering an added uniform applied field h, a connection between f (h), m(h), the Gibbs free energy g(m) and the distribution function for the uniform magnetization in a zero uniform field, P-o(m), is derived and first illustrated for pure systems, and then applied for nonzero random field. From finite-size scaling and crossover arguments, coupled with numerical data, it is found that the width of P-o(m) varies against (nonvanishing, but small) random-field intensity H-o as H-o(-3/7).
引用
收藏
页数:10
相关论文
共 39 条