A BIHARMONIC EQUATION WITH SINGULAR NONLINEARITY

被引:12
作者
Ghergu, Marius [1 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
关键词
biharmonic operator; singular nonlinearity; Green function; integral equation; GREEN-FUNCTION; POLYHARMONIC OPERATORS; POSITIVITY;
D O I
10.1017/S0013091510000234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the biharmonic equation Delta(2)u = u(-alpha), 0 < alpha < 1, in a smooth and bounded domain Omega subset of R-n, n >= 2, subject to Dirichlet; boundary conditions. Under sonic suitable assumptions on Omega related to the positivity of the Green function for the biharmonic operator, we prove the existence and uniqueness of a solution.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 21 条
[11]   OPTIMAL ESTIMATES FROM BELOW FOR BIHARMONIC GREEN FUNCTIONS [J].
Grunau, Hans-Christoph ;
Robert, Frederic ;
Sweers, Guido .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) :2151-2161
[12]   Positivity and Almost Positivity of Biharmonic Green's Functions under Dirichlet Boundary Conditions [J].
Grunau, Hans-Christoph ;
Robert, Frederic .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (03) :865-898
[13]   Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions [J].
Grunau, HC ;
Sweers, G .
MATHEMATISCHE ANNALEN, 1997, 307 (04) :589-626
[14]   Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions [J].
Grunau, HC ;
Sweers, G .
MATHEMATISCHE NACHRICHTEN, 1996, 179 :89-102
[15]   Sign change for the Green function and for the first eigenfunction of equations of clamped-plate type [J].
Grunau, HC ;
Sweers, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (02) :179-190
[16]   REGULARITY OF AN ELLIPTIC PROBLEM WITH A SINGULAR NONLINEARITY [J].
GUI, CF ;
LIN, FH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :1021-1029
[17]   On 'anti'-eigenvalues for elliptic systems and a question of McKenna and Walter [J].
Kawohl, B ;
Sweers, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (05) :1023-1040
[18]  
Krasovskii J.P., 1967, Mathematics of the USSR, V1, P935
[19]  
Protter M.H., 1967, MAXIMUM PRINCIPLE DI
[20]   AN ELEMENTARY PROOF THAT THE BIHARMONIC GREEN-FUNCTION OF AN ECCENTRIC ELLIPSE CHANGES SIGN [J].
SHAPIRO, HS ;
TEGMARK, M .
SIAM REVIEW, 1994, 36 (01) :99-101