A BIHARMONIC EQUATION WITH SINGULAR NONLINEARITY

被引:12
作者
Ghergu, Marius [1 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
关键词
biharmonic operator; singular nonlinearity; Green function; integral equation; GREEN-FUNCTION; POLYHARMONIC OPERATORS; POSITIVITY;
D O I
10.1017/S0013091510000234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the biharmonic equation Delta(2)u = u(-alpha), 0 < alpha < 1, in a smooth and bounded domain Omega subset of R-n, n >= 2, subject to Dirichlet; boundary conditions. Under sonic suitable assumptions on Omega related to the positivity of the Green function for the biharmonic operator, we prove the existence and uniqueness of a solution.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 21 条
[1]  
[Anonymous], ADV APPL MATH
[2]  
[Anonymous], REND ACC LINCEI
[3]  
[Anonymous], 1968, OEUVRES JAQUES HADAM
[4]  
[Anonymous], 1905, Rend. Circ. Mat. Palermo
[5]  
[Anonymous], ELLIPTIC PARTIAL DIF
[6]  
[Anonymous], 1951, Pacific J. Math.
[7]   OBTUSE CONES IN HILBERT-SPACES AND APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
COFFMAN, CV ;
GROVER, CL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1980, 35 (03) :369-396
[8]   Estimates for Green function and Poisson kernels of higher-order Dirichlet boundary value problems [J].
Dall'Acqua, A ;
Sweers, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :466-487
[9]  
Ghergu M., 2008, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, V37
[10]   Regions of positivity for polyharmonic green functions in arbitrary domains [J].
Grunau, Hans-Christoph ;
Sweers, Guido .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (11) :3537-3546