Novel trajectory privacy-preserving method based on clustering using differential privacy

被引:30
|
作者
Zhao, Xiaodong [1 ]
Pi, Dechang [1 ]
Chen, Junfu [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory data; Cluster analysis; Privacy protection; Differential privacy;
D O I
10.1016/j.eswa.2020.113241
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the development of location-aware technology, a large amount of location data of users is collected by the trajectory database. If these trajectory data are directly used for data mining without being processed, it will pose a threat to the user's personal privacy. At the moment, differential privacy is favored by experts and scholars because of its strict mathematical rigor, but how to apply differential privacy technology to trajectory clustering analysis is a difficult problem. To solve the problems in which existing trajectory privacy-preserving models have poor data availability or difficulty to resist complex privacy attacks, we devise novel trajectory privacy-preserving method based on clustering using differential privacy. More specifically, Laplacian noise is added to the count of trajectory location in the cluster to resist the continuous query attack. Then, radius-constrained Laplacian noise is added to the trajectory location data in the cluster to avoid too much noise affecting the clustering effect. According to the noise location data and the count of noise location, the noise clustering center in the cluster is obtained. Finally, it is considered that the attacker can associate the user trajectory with other information to form secret reasoning attack, and secret reasoning attack model is proposed. And we use the differential privacy technology to give corresponding resistance. Experimental results using the open data show that the proposed algorithm can not only effectively protect the private information of the trajectory data, but also ensure the data availability in cluster analysis. And compared with other algorithms, our algorithm has good effect on some evaluation indicators. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A Pragmatic Privacy-Preserving Deep Learning Framework Satisfying Differential Privacy
    Dang T.K.
    Tran-Truong P.T.
    SN Computer Science, 5 (1)
  • [42] Differential Privacy in Privacy-Preserving Big Data and Learning: Challenge and Opportunity
    Jiang, Honglu
    Gao, Yifeng
    Sarwar, S. M.
    GarzaPerez, Luis
    Robin, Mahmudul
    SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2021, 2022, 1536 : 33 - 44
  • [43] A Trajectory Privacy Protection Method Based on Random Sampling Differential Privacy
    Ma, Tinghuai
    Song, Fagen
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)
  • [44] EPPD: Efficient and Privacy-Preserving Proximity Testing with Differential Privacy Techniques
    Huang, Cheng
    Lu, Rongxing
    Zhu, Hui
    Shao, Jun
    Alamer, Abdulrahman
    Lin, Xiaodong
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [45] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [46] Efficient privacy-preserving classification construction model with differential privacy technology
    Lin Zhang
    Yan Liu
    Ruchuan Wang
    Xiong Fu
    Qiaomin Lin
    Journal of Systems Engineering and Electronics, 2017, 28 (01) : 170 - 178
  • [47] A Data Publishing Method for Trajectory Privacy Classification Based on Differential Privacy
    He, Qian
    Liao, Bingjie
    Liu, Peng
    Dong, Qinghe
    FRONTIERS OF NETWORKING TECHNOLOGIES, CCF CHINANET 2023, 2024, 1988 : 74 - 83
  • [48] PTCC: A Privacy-Preserving and Trajectory Clustering-Based Approach for Cooperative Caching Optimization in Vehicular Networks
    Cao, Tengfei
    Zhang, Zizhen
    Wang, Xiaoying
    Xiao, Han
    Xu, Changqiao
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (04): : 615 - 630
  • [49] Differential Privacy Data Protection Method Based on Clustering
    Li Li-xin
    Ding Yong-shan
    Wang Jia-yan
    2017 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY (CYBERC), 2017, : 11 - 16
  • [50] Efficient privacy-preserving classification construction model with differential privacy technology
    Zhang, Lin
    Liu, Yan
    Wang, Ruchuan
    Fu, Xiong
    Lin, Qiaomin
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2017, 28 (01) : 170 - 178