Partition algebras Pk(n) with 2k > n and the fundamental theorems of invariant theory for the symmetric group Sn

被引:17
作者
Benkart, Georgia [1 ]
Halverson, Tom [2 ]
机构
[1] Univ Wisconsin Madison, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[2] Macalester Coll, Dept Math Stat & Comp Sci, St Paul, MN 55105 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2019年 / 99卷 / 01期
基金
芬兰科学院;
关键词
REPRESENTATIONS;
D O I
10.1112/jlms.12175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume M-n is the n-dimensional permutation module for the symmetric group S-n, and let M-n(circle times k) be its k-fold tensor power. The partition algebra P-k(n) maps surjectively onto the centralizer algebra End(Sn) (M-n(circle times k)) for all k, n is an element of Z(>= 1) and isomorphically when n >= 2k. We describe the image of the surjection Phi(k,n) : P-k(n) -> End(Sn) (M-n(circle times k)) explicitly in terms of the orbit basis of P-k(n) and show that when 2k > n the kernel of Phi(k,n) is generated by a single essential idempotent e(k,n), which is an orbit basis element. We obtain a presentation for End(Sn) (M-n(circle times k)) by imposing one additional relation, e(k,n) = 0, to a presentation of the partition algebra P-k(n) when 2k > n. As a consequence, we obtain the fundamental theorems of invariant theory for the symmetric group S-n. We show under the natural embedding of the partition algebra P-n(n) into P-k(n) for k >= n that the essential idempotent e(n,n) generates the kernel of Phi(k,n). Therefore, the relation e(n,n) = 0 can replace e(k,n) = 0 when k >= n.
引用
收藏
页码:194 / 224
页数:31
相关论文
共 27 条
[1]  
[Anonymous], 1997, PRINCETON LANDMARKS
[2]   TENSOR PRODUCT REPRESENTATIONS OF GENERAL LINEAR-GROUPS AND THEIR CONNECTIONS WITH BRAUER ALGEBRAS [J].
BENKART, G ;
CHAKRABARTI, M ;
HALVERSON, T ;
LEDUC, R ;
LEE, CY ;
STROOMER, J .
JOURNAL OF ALGEBRA, 1994, 166 (03) :529-567
[3]   Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups [J].
Benkart, Georgia ;
Halverson, Tom ;
Harman, Nate .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (01) :77-108
[4]   THE PARTITION ALGEBRA AND THE KRONECKER COEFFICIENTS [J].
Bowman, C. ;
De Visscher, M. ;
Orellana, R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (05) :3647-3667
[5]  
BOWMAN C., INT MATH RES NOT IMR
[6]  
BOWMAN C., 2013, DISCR MATH THEOR COM, P321
[7]   On algebras which are connected with the semisimple continuous groups [J].
Brauer, R .
ANNALS OF MATHEMATICS, 1937, 38 :857-872
[8]   Generators and relations for partition monoids and algebras [J].
East, James .
JOURNAL OF ALGEBRA, 2011, 339 (01) :1-26
[9]  
Fulton W., 1991, Representation theory: a first course
[10]  
GOODMAN R., 1998, ENCY MATH ITS APPL, V68