Spectroscopic classification of tropical forest species using radiative transfer modeling

被引:59
作者
Feret, Jean-Baptiste [1 ]
Asner, Gregory P. [1 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
关键词
Leaf spectroscopy; Species discrimination; Humid tropical forest; PROSPECT; 4SAIL2; Linear discriminant analysis; Model inversion; Hyperspectral data; Spectranomics; LEAF OPTICAL-PROPERTIES; AREA INDEX; CANOPY; REFLECTANCE; BIODIVERSITY; VEGETATION; VARIABILITY; TREES;
D O I
10.1016/j.rse.2011.05.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Leaf spectroscopy may be useful for tropical species discrimination, but few studies have provided an understanding of the spectral separability of species or how leaf spectroscopy scales to the canopy level relevant to mapping. Here we report on a study to classify humid tropical forest canopy species using field-measured leaf optical properties with leaf and canopy radiative transfer models. The experimental dataset included 188 canopy species collected in humid tropical forests of Hawaii. The leaf optical model PROSPECT-5 was used to simulate the leaf spectra of each species, which was used to train a classifier based on Linear Discriminant Analysis, and a canopy radiative transfer model 4SAIL2 to scale leaf measurements to the canopy level. The relationship linking classification accuracy at the leaf level to biodiversity showed an asymptotic trend reaching a maximum error of 47% when applied to the entire 188 species experimental dataset, and 56% when a simulated dataset showing amplified within-species spectral variability was used, suggesting uniqueness of the spectral signature for a significant proportion of species under study. The maximum error in canopy-level species classification was higher than leaf-level classification: 55% when canopy structure was held constant, and 64% with varying and unknown canopy structure. However, when classifying fewer species at a time, errors dropped considerably; for example, 20 species can be classified to 82-88% accuracy. These results highlight the potential of imaging spectroscopy to provide species discrimination in high-diversity, humid tropical forests. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2415 / 2422
页数:8
相关论文
共 50 条
[1]   Global synthesis of leaf area index observations: implications for ecological and remote sensing studies [J].
Asner, GP ;
Scurlock, JMO ;
Hicke, JA .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2003, 12 (03) :191-205
[2]   Remote analysis of biological invasion and biogeochemical change [J].
Asner, GP ;
Vitousek, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (12) :4383-4386
[3]   Biophysical and biochemical sources of variability in canopy reflectance [J].
Asner, GP .
REMOTE SENSING OF ENVIRONMENT, 1998, 64 (03) :234-253
[4]   Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests [J].
Asner, Gregory P. ;
Martin, Roberta E. .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2009, 7 (05) :269-276
[5]   Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels [J].
Asner, Gregory P. ;
Martin, Roberta E. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) :3958-3970
[6]   Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests [J].
Asner, Gregory P. ;
Martin, Roberta E. ;
Tupayachi, Raul ;
Emerson, Ruth ;
Martinez, Paola ;
Sinca, Felipe ;
Powell, George V. N. ;
Wright, S. Joseph ;
Lugo, Ariel E. .
ECOLOGICAL APPLICATIONS, 2011, 21 (01) :85-98
[7]   Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest [J].
Asner, Gregory P. ;
Martin, Roberta E. .
NEW PHYTOLOGIST, 2011, 189 (04) :999-1012
[8]   Combined effects of climate and land-use change on the future of humid tropical forests [J].
Asner, Gregory P. ;
Loarie, Scott R. ;
Heyder, Ursula .
CONSERVATION LETTERS, 2010, 3 (06) :395-403
[9]   Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data:: Principles and validation [J].
Bacour, C. ;
Baret, F. ;
Beal, D. ;
Weiss, M. ;
Pavageau, K. .
REMOTE SENSING OF ENVIRONMENT, 2006, 105 (04) :313-325
[10]   USE OF SPECTRAL ANALOGY TO EVALUATE CANOPY REFLECTANCE SENSITIVITY TO LEAF OPTICAL-PROPERTIES [J].
BARET, F ;
VANDERBILT, VC ;
STEVEN, MD ;
JACQUEMOUD, S .
REMOTE SENSING OF ENVIRONMENT, 1994, 48 (02) :253-260