An improved and accelerated non-linear multigrid method for total-variation denoising

被引:37
作者
Savage, J [1 ]
Chen, K [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
image restoration; total variation; denoising; multigrid methods; Krylov acceleration; smothers;
D O I
10.1080/00207160500069904
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fast Solution of the non-linear partial differential equations (PDEs) arising front image restoration is of practical importance. The standard multigrid methods do not work well, because of the highly discontinuous coefficients of the underlying non-linear PDEs. We present two related global but linear smoothers that help the convergence of multigrid methods. Furthermore, the Krylov acceleration technique is combined with the proposed multigrid method to improve performance. Numerical experiments are shown.
引用
收藏
页码:1001 / 1015
页数:15
相关论文
共 12 条
  • [1] [Anonymous], 1997, ELEC T NUM ANAL
  • [2] [Anonymous], 1987, FRONT APPL MATH, DOI DOI 10.1137/1.9780898717570
  • [3] [Anonymous], CONTINUATION METHOD
  • [4] Briggs W. L., 1987, MULTIGRID TUTORIAL
  • [5] CHAN RH, 1997, P WORKSH SCI COMP 97
  • [6] Preserving symmetry in preconditioned Krylov subspace methods
    Chan, TF
    Chow, E
    Saad, Y
    Yeung, MC
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (02) : 568 - 581
  • [7] HENSON VE, 2003, UCRLJC150259 L LIV L
  • [8] Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal
    Marquina, A
    Osher, S
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) : 387 - 405
  • [9] NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS
    RUDIN, LI
    OSHER, S
    FATEMI, E
    [J]. PHYSICA D, 1992, 60 (1-4): : 259 - 268
  • [10] Trottenberg U., 2001, MULTIGRID