Reynolds-number dependence of turbulent velocity and pressure increments

被引:48
作者
Pearson, BR [1 ]
Antonia, RA [1 ]
机构
[1] Univ Newcastle, Dept Mech Engn, Newcastle, NSW 2308, Australia
关键词
D O I
10.1017/S0022112001005511
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The main focus is the Reynolds number dependence of Kolmogorov normalized low-order moments of longitudinal and transverse velocity increments. The velocity increments are obtained in a large number of flows and over a wide range (40-4250) of the Taylor microscale Reynolds number R-lambda. The R-lambda dependence is examined for values of the separation, r, in the dissipative range, inertial range and in excess of the integral length scale. In each range, the Kolmogorov-normalized moments of longitudinal and transverse velocity increments increase with R-lambda. The scaling exponents of both longitudinal and transverse velocity increments increase with R-lambda, the increase being more significant for the latter than the former. As R-lambda increases, the inequality between scaling exponents of longitudinal and transverse velocity increments diminishes, reflecting a reduced influence from the large-scale anisotropy or the mean shear on inertial range scales. At sufficiently large R-lambda, inertial range exponents for the second-order moment of the pressure increment follow more closely those for the fourth-order moments of transverse velocity increments than the fourth-order moments of longitudinal velocity increments. Comparison with DNS data indicates that the magnitude and R-lambda dependence of the mean square pressure gradient, based on the joint-Gaussian approximation, is incorrect. The validity of this approximation improves as r increases; when r exceeds the integral length scale, the R-lambda dependence of the second-order pressure structure functions is in reasonable agreement with the result originally given by Batchelor (1951).
引用
收藏
页码:343 / 382
页数:40
相关论文
共 83 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]   Reynolds number dependence of second-order velocity structure functions [J].
Antonia, RA ;
Pearson, BR ;
Zhou, T .
PHYSICS OF FLUIDS, 2000, 12 (11) :3000-3006
[3]   Velocity and temperature scaling in a rough wall boundary layer [J].
Antonia, RA ;
Smalley, RJ .
PHYSICAL REVIEW E, 2000, 62 (01) :640-646
[4]   Lateral vorticity measurements in a turbulent wake [J].
Antonia, RA ;
Zhu, Y ;
Shafi, HS .
JOURNAL OF FLUID MECHANICS, 1996, 323 :173-200
[5]   Scaling exponents for turbulent velocity and temperature increments [J].
Antonia, RA ;
Pearson, BR .
EUROPHYSICS LETTERS, 1997, 40 (02) :123-128
[6]   Three-component vorticity measurements in a turbulent grid flow [J].
Antonia, RA ;
Zhou, T ;
Zhu, Y .
JOURNAL OF FLUID MECHANICS, 1998, 374 :29-57
[7]   Comparison between high-order velocity vector and temperature structure functions [J].
Antonia, RA ;
Pearson, BR .
PHYSICAL REVIEW E, 1998, 57 (02) :2463-2466
[8]   Reynolds number dependence of the second-order turbulent pressure structure function [J].
Antonia, RA ;
Bisset, DK ;
Orlandi, P ;
Pearson, BR .
PHYSICS OF FLUIDS, 1999, 11 (01) :241-243
[9]   Analogy between predictions of Kolmogorov and Yaglom [J].
Antonia, RA ;
OuldRouis, M ;
Anselmet, F ;
Zhu, Y .
JOURNAL OF FLUID MECHANICS, 1997, 332 :395-409
[10]   Fourth-order moments of longitudinal- and transverse-velocity structure functions [J].
Antonia, RA ;
OuldRouis, M ;
Zhu, Y ;
Anselmet, F .
EUROPHYSICS LETTERS, 1997, 37 (02) :85-90