Design of a molecular support for cryo-EM structure determination

被引:81
|
作者
Martin, Thomas G. [1 ]
Bharat, Tanmay A. M. [1 ,2 ]
Joerger, Andreas C. [1 ,3 ]
Bai, Xiao-chen [1 ]
Praetorius, Florian [4 ]
Fersht, Alan R. [1 ]
Dietz, Hendrik [4 ]
Scheres, Sjors H. W. [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge Biomed Campus, Cambridge CB2 0QH, England
[2] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
[3] Goethe Univ Frankfurt, Inst Pharmaceut Chem, German Canc Consortium DKTK, D-60438 Frankfurt, Germany
[4] Tech Univ Munich, Walter Schottky Inst, Dept Phys, D-85748 Garching, Germany
基金
英国医学研究理事会; 欧洲研究理事会;
关键词
cryo-EM; DNA-origami; single particle analysis; structural biology; p53; P53; TUMOR-SUPPRESSOR; DNA-BINDING DOMAIN; CRYOELECTRON MICROSCOPY; CORE DOMAIN; ELECTRON-MICROSCOPY; CRYSTAL-STRUCTURE; QUATERNARY STRUCTURE; SAMPLE PREPARATION; COMPLEX; MODEL;
D O I
10.1073/pnas.1612720113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the recent rapid progress in cryo-electron microscopy (cryo-EM), there still exist ample opportunities for improvement in sample preparation. Macromolecular complexes may disassociate or adopt nonrandom orientations against the extended air-water interface that exists for a short time before the sample is frozen. We designed a hollow support structure using 3D DNA origami to protect complexes from the detrimental effects of cryo-EM sample preparation. For a first proof-of-principle, we concentrated on the transcription factor p53, which binds to specific DNA sequences on double-stranded DNA. The support structures spontaneously form monolayers of preoriented particles in a thin film of water, and offer advantages in particle picking and sorting. By controlling the position of the binding sequence on a single helix that spans the hollow support structure, we also sought to control the orientation of individual p53 complexes. Although the latter did not yet yield the desired results, the support structures did provide partial information about the relative orientations of individual p53 complexes. We used this information to calculate a tomographic 3D reconstruction, and refined this structure to a final resolution of similar to 15 angstrom. This structure settles an ongoing debate about the symmetry of the p53 tetramer bound to DNA.
引用
收藏
页码:E7456 / E7463
页数:8
相关论文
共 50 条
  • [21] Atomic resolution structure determination by the cryo-EM method MicroED
    Liu, Shian
    Hattne, Johan
    Reyes, Francis E.
    Sanchez-Martinez, Silvia
    de la Cruz, M. Jason
    Shi, Dan
    Gonen, Tamir
    PROTEIN SCIENCE, 2017, 26 (01) : 8 - 15
  • [22] Volta phase plate data collection facilitates image processing and cryo-EM structure determination
    von Loeffelholz, Ottilie
    Papai, Gabor
    Danev, Radostin
    Myasnikov, Alexander G.
    Natchiar, S. Kundhavai
    Hazemann, Isabelle
    Menetret, Jean-Francois
    Klaholz, Bruno P.
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 202 (03) : 191 - 199
  • [23] Cryo-EM in molecular and cellular biology
    Saibil, Helen R.
    MOLECULAR CELL, 2022, 82 (02) : 274 - 284
  • [24] Routine determination of ice thickness for cryo-EM grids
    Rice, William J.
    Cheng, Anchi
    Noble, Alex J.
    Eng, Edward T.
    Kim, Laura Y.
    Carragher, Bridget
    Potter, Clinton S.
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (01) : 38 - 44
  • [25] Batch Production of High-Quality Graphene Grids for Cryo-EM: Cryo-EM Structure of Methylococcus capsulatus Soluble Methane Monooxygenase Hydroxylase
    Ahn, Eungjin
    Kim, Byungchul
    Park, Soyoung
    Erwin, Amanda L.
    Sung, Suk Hyun
    Hovden, Robert
    Mosalaganti, Shyamal
    Cho, Uhn-Soo
    ACS NANO, 2023, 17 (06) : 6011 - 6022
  • [26] Cryo-EM of viruses and vaccine design
    Earl, Lesley A.
    Subramaniam, Sriram
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (32) : 8903 - 8905
  • [27] Receptor Dynamics in Molecular Recognition by Cryo-EM and Molecular Simulation
    Zhao, Yizhen
    Wang, He
    Zang, Yongjian
    Zhu, Xun
    Zhang, Shengli
    Zhang, Lei
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2021, 24 (10) : 1696 - 1701
  • [28] UNIFIED DATA RESOURCE FOR CRYO-EM
    Lawson, Catherine L.
    METHODS IN ENZYMOLOGY, VOL 483: CRYO-EM, PART C: ANALYSES, INTERPRETATION, AND CASE STUDIES, 2010, 483 : 73 - 90
  • [29] Exploring applications of crowdsourcing to cryo-EM
    Bruggemann, Jacob
    Lander, Gabriel C.
    Su, Andrew, I
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 203 (01) : 37 - 45
  • [30] Fast multiscale reconstruction for Cryo-EM
    Donati, Laurene
    Nilchian, Masih
    Sorzano, Carlos Oscar S.
    Unser, Michael
    JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (03) : 543 - 554