Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells

被引:53
作者
Generalov, Roman [1 ,2 ]
Kuan, Woo Boon [3 ]
Chen, Wei [3 ]
Kristensen, Solveig [2 ]
Juzenas, Petras [1 ]
机构
[1] Oslo Univ Hosp, Norwegian Radium Hosp, Inst Canc Res, Dept Radiat Biol, N-0310 Oslo, Norway
[2] Univ Oslo, Dept Pharm, Sch Pharm, N-0316 Oslo, Norway
[3] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Ionizing radiation; Free radicals; Radiation therapy; Radiosensitization; Radiation-induced catalysis; NANOSCALE ENERGY DEPOSITION; TIO2; NANOPARTICLES; IN-VITRO; RADIATION; SCINTILLATION; GENERATION; DISPERSION; THERAPIES; GROWTH;
D O I
10.1016/j.colsurfb.2015.03.026
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Nanoparticulates responsive to X-rays offer increased efficacy of radiation therapy. However, successful demonstrations of such nanoparticle use are limited so far due to lack of significant radiosensitizing effects or poor nanoparticle stability in a biological system. Zinc oxide (ZnO) is the most promising biocompatible material for medicinal applications. In this paper, we report preparation and characterization of scintillating ZnO/SiO2 core-shell nanoparticles. The ZnO/SiO2 nanoparticles absorb ultraviolet (UV) radiation (below 360 nm) and emit green fluorescence (400-750 nm, maximum 550 nm). Under Xray irradiation (200 kVp), the nanoparticles scintillate emitting luminescence in the region 350-700 nm (maximum 420 nm). The synthesized ZnO/SiO2 nanoparticles are stable in a biologically relevant environment (water and cell growth medium). The potential of the ZnO/SiO2 nanoparticles for radiosensitization is demonstrated in human prostate adenocarcinoma cell lines (LNCaP and Du145). The nanoparticles enhance radiation-induced reduction in cell survival about 2-fold for LNCaP and 1.5-fold for Du145 cells. Radiosensitizing effect can be attributed to X-ray-induced radiocatalysis by the nanoparticles. (C) 2015 Elsevier B.V. All rights. reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 39 条
  • [1] Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium
    Allouni, Zouhir E.
    Cimpan, Mihaela R.
    Hol, Paul J.
    Skodvin, Tore
    Gjerdet, Nils R.
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 68 (01) : 83 - 87
  • [2] [Anonymous], 1994, HDB OPTICS, V2
  • [3] Optimized dispersion of nanoparticles for biological in vitro and in vivo studies
    Bihari, Peter
    Vippola, Minnamari
    Schultes, Stephan
    Praetner, Marc
    Khandoga, Alexander G.
    Reichel, Christoph A.
    Coester, Conrad
    Tuomi, Timo
    Rehberg, Markus
    Krombach, Fritz
    [J]. PARTICLE AND FIBRE TOXICOLOGY, 2008, 5 (1)
  • [4] MEASUREMENT OF REFRACTIVE INDICES OF SEVERAL CRYSTALS
    BOND, WL
    [J]. JOURNAL OF APPLIED PHYSICS, 1965, 36 (05) : 1674 - &
  • [5] Nanoscale energy deposition by x-ray absorbing nanostructures
    Carter, Joshua D.
    Cheng, Neal N.
    Qu, Yongquan
    Suarez, George D.
    Guo, Ting
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (40) : 11622 - 11625
  • [6] Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment
    Chen, W
    Zhang, J
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (04) : 1159 - 1166
  • [7] Long-term urinary adverse effects of pelvic radiotherapy
    Elliott, Sean P.
    Malaeb, Bahaa S.
    [J]. WORLD JOURNAL OF UROLOGY, 2011, 29 (01) : 35 - 41
  • [8] Fakhar-e-Alam M., 2012, Rev. Nanosci. Nanotechnol, P40, DOI [10.1166/rnn.2012.1004, DOI 10.1166/RNN.2012.1004]
  • [9] Gantchev T. G., 2011, DNA RADIOSENSITIZATI, P417
  • [10] Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma
    Hainfeld, James F.
    Dilmanian, F. Avraham
    Zhong, Zhong
    Slatkin, Daniel N.
    Kalef-Ezra, John A.
    Smilowitz, Henry M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (11) : 3045 - 3059