Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6

被引:76
作者
Bracegirdle, Thomas J. [1 ]
Krinner, Gerhard [2 ]
Tonelli, Marcos [3 ]
Haumann, F. Alexander [4 ]
Naughten, Kaitlin A. [1 ]
Rackow, Thomas [5 ]
Roach, Lettie A. [6 ]
Wainer, Ilana [3 ]
机构
[1] British Antarctic Survey, Madingley Rd, Cambridge CB3 0ET, England
[2] Univ Grenoble Alpes, CNRS, Inst Geosci Environm IGE, Grenoble, France
[3] Univ Sao Paulo, Inst Oceanog, Sao Paulo, Brazil
[4] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA
[5] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Climate Dynam, Bremerhaven, Germany
[6] Univ Washington, Atmospher Sci, Seattle, WA 98195 USA
来源
ATMOSPHERIC SCIENCE LETTERS | 2020年 / 21卷 / 09期
基金
瑞士国家科学基金会; 美国国家科学基金会; 英国自然环境研究理事会; 美国海洋和大气管理局;
关键词
Antarctic; climate; CMIP6; projection; Southern Ocean; westerlies; STRATOSPHERIC OZONE RECOVERY; ICE-SHEET; EXPERIMENTAL-DESIGN; CONTINENTAL-SHELF; MODEL; RESPONSES; WATER; CO2;
D O I
10.1002/asl.984
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Two decades into the 21st century there is growing evidence for global impacts of Antarctic and Southern Ocean climate change. Reliable estimates of how the Antarctic climate system would behave under a range of scenarios of future external climate forcing are thus a high priority. Output from new model simulations coordinated as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) provides an opportunity for a comprehensive analysis of the latest generation of state-of-the-art climate models following a wider range of experiment types and scenarios than previous CMIP phases. Here the main broad-scale 21st century Antarctic projections provided by the CMIP6 models are shown across four forcing scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. End-of-century Antarctic surface-air temperature change across these scenarios (relative to 1995-2014) is 1.3, 2.5, 3.7 and 4.8 degrees C. The corresponding proportional precipitation rate changes are 8, 16, 24 and 31%. In addition to these end-of-century changes, an assessment of scenario dependence of pathways of absolute and global-relative 21st century projections is conducted. Potential differences in regional response are of particular relevance to coastal Antarctica, where, for example, ecosystems and ice shelves are highly sensitive to the timing of crossing of key thresholds in both atmospheric and oceanic conditions. Overall, it is found that the projected changes over coastal Antarctica do not scale linearly with global forcing. We identify two factors that appear to contribute: (a) a stronger global-relative Southern Ocean warming in stabilisation (SSP2-4.5) and aggressive mitigation (SSP1-2.6) scenarios as the Southern Ocean continues to warm and (b) projected recovery of Southern Hemisphere stratospheric ozone and its effect on the mid-latitude westerlies. The major implication is that over coastal Antarctica, the surface warming by 2100 is stronger relative to the global mean surface warming for the low forcing compared to high forcing future scenarios.
引用
收藏
页数:14
相关论文
共 43 条
[1]  
Armour KC, 2016, NAT GEOSCI, V9, P549, DOI [10.1038/NGEO2731, 10.1038/ngeo2731]
[2]   Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1) [J].
Asay-Davis, Xylar S. ;
Cornford, Stephen L. ;
Durand, Gael ;
Galton-Fenzi, Benjamin K. ;
Gladstone, Rupert M. ;
Gudmundsson, G. Hilmar ;
Hattermann, Tore ;
Holland, David M. ;
Holland, Denise ;
Holland, Paul R. ;
Martin, Daniel F. ;
Mathiot, Pierre ;
Pattyn, Frank ;
Seroussi, Helene .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (07) :2471-2497
[3]   Delayed Southern Hemisphere Climate Change Induced by Stratospheric Ozone Recovery, as Projected by the CMIP5 Models [J].
Barnes, Elizabeth A. ;
Barnes, Nicholas W. ;
Polvani, Lorenzo M. .
JOURNAL OF CLIMATE, 2014, 27 (02) :852-867
[4]   The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation [J].
Bracegirdle, Thomas J. ;
Stephenson, David B. ;
Turner, John ;
Phillips, Tony .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (24) :10832-10839
[5]   Global atmospheric impacts induced by year-round open water adjacent to Antarctica [J].
Bromwich, DH ;
Chen, B ;
Hines, KM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D10) :11173-11189
[6]   Change in future climate due to Antarctic meltwater [J].
Bronselaer, Ben ;
Winton, Michael ;
Griffies, Stephen M. ;
Hurlin, William J. ;
Rodgers, Keith B. ;
Sergienko, Olga V. ;
Stouffer, Ronald J. ;
Russell, Joellen L. .
NATURE, 2018, 564 (7734) :53-+
[7]   Reassessing Southern Ocean Air-Sea CO2 Flux Estimates With the Addition of Biogeochemical Float Observations [J].
Bushinsky, Seth M. ;
Landschuetzer, Peter ;
Roedenbeck, Christian ;
Gray, Alison R. ;
Baker, David ;
Mazloff, Matthew R. ;
Resplandy, Laure ;
Johnson, Kenneth S. ;
Sarmiento, Jorge L. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2019, 33 (11) :1370-1388
[8]   Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge [J].
De Rydt, J. ;
Gudmundsson, G. H. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2016, 121 (05) :865-880
[9]   Contribution of Antarctica to past and future sea-level rise [J].
DeConto, Robert M. ;
Pollard, David .
NATURE, 2016, 531 (7596) :591-597
[10]   Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations [J].
Dhomse, Sandip S. ;
Kinnison, Douglas ;
Chipperfield, Martyn P. ;
Salawitch, Ross J. ;
Cionni, Irene ;
Hegglin, Michaela I. ;
Abraham, N. Luke ;
Akiyoshi, Hideharu ;
Archibald, Alex T. ;
Bednarz, Ewa M. ;
Bekki, Slimane ;
Braesicke, Peter ;
Butchart, Neal ;
Dameris, Martin ;
Deushi, Makoto ;
Frith, Stacey ;
Hardiman, Steven C. ;
Hassler, Birgit ;
Horowitz, LarryW. ;
Hu, Rong-Ming ;
Joeckel, Patrick ;
Josse, Beatrice ;
Kirner, Oliver ;
Kremser, Stefanie ;
Langematz, Ulrike ;
Lewis, Jared ;
Marchand, Marion ;
Lin, Meiyun ;
Mancini, Eva ;
Marecal, Virginie ;
Michou, Martine ;
Morgenstern, Olaf ;
O'Connor, Fiona M. ;
Oman, Luke ;
Pitari, Giovanni ;
Plummer, David A. ;
Pyle, John A. ;
Revell, Laura E. ;
Rozanov, Eugene ;
Schofield, Robyn ;
Stenke, Andrea ;
Stone, Kane ;
Sudo, Kengo ;
Tilmes, Simone ;
Visioni, Daniele ;
Yamashita, Yousuke ;
Zeng, Guang .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (11) :8409-8438