Coding for errors and erasures in random network coding

被引:23
作者
Koetter, Ralf [1 ]
Kschischang, Frank R. [2 ]
机构
[1] Tech Univ Munich, Inst Commun Engn, D-80333 Munich, Germany
[2] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
来源
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7 | 2007年
关键词
D O I
10.1109/ISIT.2007.4557321
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of error-control in a "noncoherent" random network coding channel is considered. Information transmission is modelled as the injection into the network of a basis for a vector space V and the collection by the receiver of a basis for a vector space U. A suitable coding metric on subspaces is defined, under which a minimum distance decoder achieves correct decoding if the dimension of the space V boolean AND U is large enough. When the dimension of each codeword is restricted to a fixed integer, the code forms a subset of the vertices of the Grassmann graph. Sphere-packing, sphere-covering bounds and a Singleton bound are provided for such codes. A Reed-Solomon-like code construction is provided and a decoding algorithm given.
引用
收藏
页码:791 / +
页数:2
相关论文
共 19 条
[1]   On perfect codes and related concepts [J].
Ahlswede, R ;
Aydinian, HK ;
Khachatrian, LH .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 22 (03) :221-237
[2]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[3]  
Cai N, 2002, PROCEEDINGS OF 2002 IEEE INFORMATION THEORY WORKSHOP, P119, DOI 10.1109/ITW.2002.1115432
[4]  
Cai N, 2006, COMMUN INF SYST, V6, P37
[5]   ON THE ZEROS OF THE ASKEY-WILSON POLYNOMIALS, WITH APPLICATIONS TO CODING THEORY [J].
CHIHARA, L .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :191-207
[6]  
Chou P. A., 2003, P 2003 ALL C COMM CO
[7]  
Gabidulin E. M., 1985, Problems of Information Transmission, V21, P1
[8]   A random linear network coding approach to multicast [J].
Ho, Tracey ;
Medard, Muriel ;
Koetter, Ralf ;
Karger, David R. ;
Effros, Michelle ;
Shi, Jun ;
Leong, Ben .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) :4413-4430
[9]  
JAGGI S, 2007, P 26 ANN IEEE C COMP
[10]  
KOETTER R, 2007, IEEE T INF UNPUB MAR