Ectopic Expression of AeNAC83, a NAC Transcription Factor from Abelmoschus esculentus, Inhibits Growth and Confers Tolerance to Salt Stress in Arabidopsis

被引:11
|
作者
Zhao, Xuan [1 ]
Wu, Tingting [1 ]
Guo, Shixian [1 ]
Hu, Junling [1 ]
Zhan, Yihua [1 ]
机构
[1] Zhejiang A&F Univ, Coll Adv Agr Sci, Key Lab Qual Improvement Agr Prod Zhejiang Prov, Hangzhou 311300, Peoples R China
关键词
okra; salt stress; growth; NAC transcription factor; flavonoid; photosynthesis; SECONDARY WALL SYNTHESIS; NO-APICAL-MERISTEM; FUNCTIONAL-ANALYSIS; FACTOR FAMILY; GENES; IDENTIFICATION; DOWNSTREAM; FLAVONOIDS; RESPONSES; PATHWAYS;
D O I
10.3390/ijms231710182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NAC transcription factors play crucial roles in plant growth, development and stress responses. Previously, we preliminarily identified that the transcription factor AeNAC83 gene was significantly up-regulated under salt stress in okra (Abelmoschus esculentus). Herein, we cloned the nuclear-localized AeNAC83 from okra and identified its possible role in salt stress response and plant growth. The down-regulation of AeNAC83 caused by virus-induced gene silencing enhanced plant sensitivity to salt stress and increased the biomass accumulation of okra seedlings. Meanwhile, AeNAC83-overexpression Arabidopsis lines improved salt tolerance and exhibited many altered phenotypes, including small rosette, short primary roots, and promoted crown roots and root hairs. RNA-seq showed numerous genes at the transcriptional level that changed significantly in the AeNAC83-overexpression transgenic and the wild Arabidopsis with or without NaCl treatment, respectively. The expression of most phenylpropanoid and flavonoid biosynthesis-related genes was largely induced by salt stress. While genes encoding key proteins involved in photosynthesis were almost declined dramatically in AeNAC83-overexpression transgenic plants, and NaCl treatment further resulted in the down-regulation of these genes. Furthermore, DEGs encoding various plant hormone signal pathways were also identified. These results indicate that AeNAC83 is involved in resistance to salt stress and plant growth.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Ectopic expression of HaPEPC1 from the desert shrub Haloxylon ammodendron confers drought stress tolerance in Arabidopsis thaliana
    Zhang, Zhilong
    Zhang, Anna
    Zhang, Yaru
    Zhao, Juan
    Wang, Yuanyuan
    Zhang, Lingling
    Zhang, Sheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 208
  • [42] A novel NAC transcription factor from Haloxylon ammodendron promotes reproductive growth in Arabidopsis thaliana under drought stress
    Liang, Jianshun
    Liu, Xiashun
    Xu, Lei
    Mu, Rongbo
    Shen, Nengshuang
    Li, Shanshan
    Cheng, Cong
    Ren, Yanping
    Ma, Li
    Wang, Bo
    Yao, Zhengpei
    Zhang, Hua
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 228
  • [43] Ectopic expression of the sesame MYB transcription factor SiMYB75 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis
    Dossa, Komivi
    Mmadi, Marie A.
    Zhou, Rong
    Liu, Aili
    Yang, Yuanxiao
    Diouf, Diaga
    You, Jun
    Zhang, Xiurong
    AOB PLANTS, 2020, 12 (01):
  • [44] Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice
    Rahman, Hifzur
    Ramanathan, Valarmathi
    Nallathambi, Jagedeeshselvam
    Duraialagaraja, Sudhakar
    Muthurajan, Raveendran
    BMC BIOTECHNOLOGY, 2016, 16
  • [45] Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco
    Liu, Xiashun
    Zong, Xingfeng
    Wu, Xia
    Liu, Hao
    Han, Jvdong
    Yao, Zhengpei
    Ren, Yanping
    Ma, Li
    Wang, Bo
    Zhang, Hua
    PLANTA, 2022, 256 (06)
  • [46] Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice
    Hifzur Rahman
    Valarmathi Ramanathan
    Jagedeeshselvam Nallathambi
    Sudhakar Duraialagaraja
    Raveendran Muthurajan
    BMC Biotechnology, 16
  • [47] Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco
    Xiashun Liu
    Xingfeng Zong
    Xia Wu
    Hao Liu
    Jvdong Han
    Zhengpei Yao
    Yanping Ren
    Li Ma
    Bo Wang
    Hua Zhang
    Planta, 2022, 256
  • [48] PsnERF75 Transcription Factor from Populus simonii x P-nigra Confers Salt Tolerance in Transgenic Arabidopsis
    Wang, Shengji
    Zhou, Boru
    Yao, Wenjing
    Jiang, Tingbo
    JOURNAL OF PLANT BIOLOGY, 2018, 61 (02) : 61 - 71
  • [49] PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice
    Hou, Dan
    Zhao, Zhongyu
    Hu, Qiutao
    Li, Ling
    Vasupalli, Naresh
    Zhuo, Juan
    Zeng, Wei
    Wu, Aimin
    Lin, Xinchun
    TREE PHYSIOLOGY, 2020, 40 (12) : 1792 - 1806
  • [50] Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis
    Rohit Joshi
    Mangu Venkata Ramanarao
    Seokhyun Lee
    Naohiro Kato
    Niranjan Baisakh
    Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 117 : 17 - 30