Projection-Based Metal-Artifact Reduction for Industrial 3D X-ray Computed Tomography

被引:26
作者
Amirkhanov, Artem [1 ]
Heinzl, Christoph
Reiter, Michael
Kastner, Johann
Groeller, M. Eduard [1 ]
机构
[1] Vienna Univ Technol, Inst Comp Graph & Algorithms, Vienna, Austria
关键词
Metal-artifact reduction; multi-material components; visual analysis; 3D X-ray computed tomography; INTERPOLATION; CT; RECONSTRUCTION;
D O I
10.1109/TVCG.2011.228
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Multi-material components, which contain metal parts surrounded by plastic materials, are highly interesting for inspection using industrial 3D X-ray computed tomography (3DXCT). Examples of this application scenario are connectors or housings with metal inlays in the electronic or automotive industry. A major problem of this type of components is the presence of metal, which causes streaking artifacts and distorts the surrounding media in the reconstructed volume. Streaking artifacts and dark-band artifacts around metal components significantly influence the material characterization (especially for the plastic components). In specific cases these artifacts even prevent a further analysis. Due to the nature and the different characteristics of artifacts, the development of an efficient artifact-reduction technique in reconstruction-space is rather complicated. In this paper we present a projection-space pipeline for metal-artifacts reduction. The proposed technique first segments the metal in the spatial domain of the reconstructed volume in order to separate it from the other materials. Then metal parts are forward-projected on the set of projections in a way that metal-projection regions are treated as voids. Subsequently the voids, which are left by the removed metal, are interpolated in the 2D projections. Finally, the metal is inserted back into the reconstructed 3D volume during the fusion stage. We present a visual analysis tool, allowing for interactive parameter estimation of the metal segmentation. The results of the proposed artifact-reduction technique are demonstrated on a test part as well as on real world components. For these specimens we achieve a significant reduction of metal artifacts, allowing an enhanced material characterization.
引用
收藏
页码:2193 / 2202
页数:10
相关论文
共 33 条
[1]  
[Anonymous], THESIS VIENNA U TECH
[2]  
[Anonymous], 2005, The ITK Software Guide
[3]   Artifacts in CT: Recognition and avoidance [J].
Barrett, JF ;
Keat, N .
RADIOGRAPHICS, 2004, 24 (06) :1679-1691
[4]   Mathematical models for local nontexture inpaintings [J].
Chan, TF ;
Shen, JH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :1019-1043
[5]  
Duan X., 2008, P IEEE NUCL SCI S C, P4175
[6]   PRACTICAL CONE-BEAM ALGORITHM [J].
FELDKAMP, LA ;
DAVIS, LC ;
KRESS, JW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (06) :612-619
[7]   A hybrid approach to simulate multiple photon scattering in X-ray imaging [J].
Freud, N ;
Létang, JM ;
Babot, D .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 227 (04) :551-558
[8]   Interactive Volume Exploration for Feature Detection and Quantification in Industrial CT Data [J].
Hadwiger, Markus ;
Fritz, Laura ;
Rezk-Salama, Christof ;
Hoellt, Thomas ;
Geier, Georg ;
Pabel, Thomas .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) :1507-1514
[9]  
Heinzl C, 2008, VMV, V8, P179
[10]   CORRECTION FOR BEAM HARDENING IN COMPUTED-TOMOGRAPHY [J].
HERMAN, GT .
PHYSICS IN MEDICINE AND BIOLOGY, 1979, 24 (01) :81-106