Small scale effect on flow-induced instability of double-walled carbon nanotubes

被引:20
作者
Chang, T. -P. [1 ]
Liu, M. -F. [2 ]
机构
[1] Natl Kaohsiung First Univ Sci & Technol, Dept Construct Engn, Kaohsiung, Taiwan
[2] I Shou Univ, Dept Appl Math, Kaohsiung, Taiwan
关键词
Double-walled carbon nanotubes; Instability; Small scale effect; Nonlocal elasticity theory; Nonlocal shell model; Critical flow velocity; CONTINUUM-MECHANICS; FLUID-FLOW; DYNAMICS;
D O I
10.1016/j.euromechsol.2011.06.012
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Small scale effect on flow-induced instability of double-walled carbon nanotubes (DWCNTs) is investigated using an elastic shell model based on Donnell's shell theory. The dynamic governing equations of DWCNTs are formulated on the basis of nonlocal elasticity theory, in addition, the van der Waals (vdW) interaction between the inner and outer walls is taken into account in the nonlocal shell modeling. The instability of DWCNTs that is induced by a pressure-driven steady flow is investigated. The numerical computations indicate that as the flow velocity increases, DWCNTs have a destabilizing way to get through multi-bifurcations of the first and second bifurcations in turn. It is concluded that the natural frequency of DWCNTs and the critical flow velocity of the flow-induced instability are strictly related to the ratio of the length to the outer radius of DWCNTs, the pressure of the fluid and the small scale effects. Furthermore, it is interesting to observe that as the small scale effects are considered, the natural frequencies and the critical flow velocities of DWCNTs decrease as compared to the results with the classical (local) continuum mechanics, therefore, the small scale effects play an important role on performing the instability analysis in the fluid-conveying DWCNTs. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 34 条
[1]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part I:: Stability [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 1999, 225 (04) :655-699
[2]   Logic circuits with carbon nanotube transistors [J].
Bachtold, A ;
Hadley, P ;
Nakanishi, T ;
Dekker, C .
SCIENCE, 2001, 294 (5545) :1317-1320
[3]   MOLECULAR-DYNAMICS OF FLOW IN MICROPORES [J].
BITSANIS, I ;
MAGDA, JJ ;
TIRRELL, M ;
DAVIS, HT .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (03) :1733-1750
[4]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[5]  
Dresselhaus MS, 2001, TOP APPL PHYS, V80, P1
[6]  
Eringen A.C., 1976, Nonlocal Polar Field Models
[8]   Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice. [J].
Gao, YH ;
Bando, Y .
NATURE, 2002, 415 (6872) :599-599
[9]   Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction [J].
He, XQ ;
Kitipornchai, S ;
Liew, KM .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (02) :303-326
[10]   Water conduction through the hydrophobic channel of a carbon nanotube [J].
Hummer, G ;
Rasaiah, JC ;
Noworyta, JP .
NATURE, 2001, 414 (6860) :188-190