The Universal Enveloping Algebra of the Schrodinger Algebra and its Prime Spectrum

被引:15
作者
Bavula, V. V. [1 ]
Lu, T. [2 ]
机构
[1] Univ Sheffield, Dept Pure Math, Hicks Bldg, Sheffield S3 7RH, S Yorkshire, England
[2] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2018年 / 61卷 / 04期
关键词
prime ideal; weight module; simple module; centralizer; Whittaker module; SIMPLE WEIGHT MODULES; CLASSIFICATION; REPRESENTATIONS; FINITE;
D O I
10.4153/CMB-2018-009-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The prime, completely prime, maximal, and primitive spectra are classified for the universal enveloping algebra of the Schrodinger algebra. The explicit generators are given for all of these ideals. A counterexample is constructed to the conjecture of Cheng and Zhang about non-existence of simple singular Whittaker modules for the Schrodinger algebra (and all such modules are classified). It is proved that the conjecture holds 'generically'.
引用
收藏
页码:688 / 703
页数:16
相关论文
共 18 条
[1]   Intertwining operator realization of non-relativistic holography [J].
Aizawa, N. ;
Dobrev, V. K. .
NUCLEAR PHYSICS B, 2010, 828 (03) :581-593
[2]   The simple modules of the ore extensions with coefficients from a Dedekind ring [J].
Bavula, V .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (06) :2665-2699
[3]  
Bavula VV, 2018, J LIE THEORY, V28, P525
[4]   Classification of Simple Weight Modules over the Schrodinger Algebra [J].
Bavula, V. V. ;
Lu, T. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (01) :16-39
[5]   The Prime Spectrum and Simple Modules Over the Quantum Spatial Ageing Algebra [J].
Bavula, V. V. ;
Lu, T. .
ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (05) :1109-1133
[6]  
Bavula V. V., 1993, UKR MATH J, V45, P329, DOI DOI 10.1007/BF01061007
[7]  
Bavula V.V., 1993, Ukrain. Mat. Zh, V45, P223, DOI DOI 10.1007/BF01060977
[9]   Quasi-Whittaker modules for the Schrodinger algebra [J].
Cai, Yan-an ;
Cheng, Yongsheng ;
Shen, Ran .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 463 :16-32
[10]  
Dixmier J., 1996, GRADUATE STUDIES MAT, V11, DOI DOI 10.1090/GSM/011