On a Dirichlet Process Mixture Representation of Phase-Type Distributions

被引:1
|
作者
Ayala, Daniel [1 ]
Jofre, Leonardo [1 ]
Gutierrez, Luis [2 ]
Mena, Ramses H. [3 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Region Metropol, Chile
[2] Pontificia Univ Catolica Chile, Dept Estadist, ANID Millennium Sci Initiat Program, Millennium Nucleus Ctr Discovery Struct Complex D, Santiago, Region Metropol, Chile
[3] IIMAS UNAM, Mexico City, DF, Mexico
来源
BAYESIAN ANALYSIS | 2022年 / 17卷 / 03期
关键词
Bayesian nonparametrics; Erlang distribution; mixture model; renewal function; SAMPLING METHODS; MODELS;
D O I
10.1214/21-BA1272
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An explicit representation of phase-type distributions as an infinite mixture of Erlang distributions is introduced. The representation unveils a novel and useful connection between a class of Bayesian nonparametric mixture mod-els and phase-type distributions. In particular, this sheds some light on two hot topics, estimation techniques for phase-type distributions, and the availability of closed-form expressions for some functionals related to Dirichlet process mixture models. The power of this connection is illustrated via a posterior inference al-gorithm to estimate phase-type distributions, avoiding some difficulties with the simulation of latent Markov jump processes, commonly encountered in phase-type Bayesian inference. On the other hand, closed-form expressions for functionals of Dirichlet process mixture models are illustrated with density and renewal function estimation, related to the optimal salmon weight distribution of an aquaculture study.
引用
收藏
页码:765 / 790
页数:26
相关论文
共 50 条
  • [1] Asymptotic tail behaviour of phase-type scale mixture distributions
    Rojas-Nandayapa, Leonardo
    Xie, Wangyue
    ANNALS OF ACTUARIAL SCIENCE, 2018, 12 (02) : 412 - 432
  • [2] MULTIVARIATE PHASE-TYPE DISTRIBUTIONS
    ASSAF, D
    LANGBERG, NA
    SAVITS, TH
    SHAKED, M
    OPERATIONS RESEARCH, 1984, 32 (03) : 688 - 702
  • [3] BILATERAL PHASE-TYPE DISTRIBUTIONS
    SHANTHIKUMAR, JG
    NAVAL RESEARCH LOGISTICS, 1985, 32 (01) : 119 - 136
  • [4] A DIRICHLET PROCESS MIXTURE OF DIRICHLET DISTRIBUTIONS FOR CLASSIFICATION AND PREDICTION
    Bouguila, Nizar
    Ziou, Djemel
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 297 - +
  • [5] PHASE: A Stochastic Formalism for Phase-Type Distributions
    Ciobanu, Gabriel
    Rotaru, Armand Stefan
    FORMAL METHODS AND SOFTWARE ENGINEERING, ICFEM 2014, 2014, 8829 : 91 - 106
  • [6] THE ALGEBRAIC DEGREE OF PHASE-TYPE DISTRIBUTIONS
    Fackrell, Mark
    He, Qi-Ming
    Taylor, Peter
    Zhang, Hanqin
    JOURNAL OF APPLIED PROBABILITY, 2010, 47 (03) : 611 - 629
  • [7] Phase-type representations for exponential distributions
    Albrecher, Hansjorg
    Gardner, Clara Brimnes
    Nielsen, Bo Friis
    ADVANCES IN APPLIED PROBABILITY, 2025,
  • [8] PHASE-TYPE DISTRIBUTIONS AND INVARIANT POLYTOPES
    OCINNEIDE, CA
    ADVANCES IN APPLIED PROBABILITY, 1991, 23 (03) : 515 - 535
  • [9] PHASE-TYPE DISTRIBUTIONS IN SURVIVAL ANALYSIS
    AALEN, OO
    SCANDINAVIAN JOURNAL OF STATISTICS, 1995, 22 (04) : 447 - 463
  • [10] Convolutions of multivariate phase-type distributions
    Berdel, Jasmin
    Hipp, Christian
    INSURANCE MATHEMATICS & ECONOMICS, 2011, 48 (03): : 374 - 377