A novel data augmentation based on Gabor filter and convolutional deep learning for improving the classification of COVID-19 chest X-Ray images

被引:71
作者
Barshooi, Amir Hossein [1 ]
Amirkhani, Abdollah [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Automot Engn, Tehran 1684613114, Iran
关键词
COVID-19; Generative adversarial network; Classification; Gabor; Data augmentation; Deep learning; SEGMENTATION; CORONAVIRUS; ALGORITHM;
D O I
10.1016/j.bspc.2021.103326
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A dangerous infectious disease of the current century, the COVID-19 has apparently originated in a city in China and turned into a widespread pandemic within a short time. In this paper, a novel method has been presented for improving the screening and classification of COVID-19 patients based on their chest X-Ray (CXR) images. This method eliminates the severe dependence of the deep learning models on large datasets and the deep features extracted from them. In this approach, we have not only resolved the data limitation problem by combining the traditional data augmentation techniques with the generative adversarial networks (GANs), but also have enabled a deeper extraction of features by applying different filter banks such as the Sobel, Laplacian of Gaussian (LoG) and the Gabor filters. To verify the satisfactory performance of the proposed approach, it was applied on several deep transfer models and the results in each step were compared with each other. For training the entire models, we used 4560 CXR images of various patients with the viral, bacterial, fungal, and other diseases; 360 of these images are in the COVID-19 category and the rest belong to the non-COVID-19 diseases. According to the results, the Gabor filter bank achieves the highest growth in the values of the defined evaluation criteria and in just 45 epochs, it is able to elevate the accuracy by up to 32%. We then applied the proposed model on the DenseNet-201 model and compared its performance in terms of the detection accuracy with the performances of 10 existing COVID-19 detection techniques. Our approach was able to achieve an accuracy of 98.5% in the two class classification procedure; which makes it a state-of-the-art method for detecting the COVID-19.
引用
收藏
页数:15
相关论文
共 53 条
[1]   Predicting COVID-19 Based on Environmental Factors With Machine Learning [J].
Abdulkareem, Amjed Basil ;
Sani, Nor Samsiah ;
Sahran, Shahnorbanun ;
Alyessari, Zaid Abdi Alkareem ;
Adam, Afzan ;
Abd Rahman, Abdul Hadi ;
Abdulkarem, Abdulkarem Basil .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (02) :305-320
[2]   Coronavirus herd immunity optimizer (CHIO) [J].
Al-Betar, Mohammed Azmi ;
Alyasseri, Zaid Abdi Alkareem ;
Awadallah, Mohammed A. ;
Abu Doush, Iyad .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10) :5011-5042
[3]   Review on COVID-19 diagnosis models based on machine learning and deep learning approaches [J].
Alyasseri, Zaid Abdi Alkareem ;
Al-Betar, Mohammed Azmi ;
Abu Doush, Iyad ;
Awadallah, Mohammed A. ;
Abasi, Ammar Kamal ;
Makhadmeh, Sharif Naser ;
Alomari, Osama Ahmad ;
Abdulkareem, Karrar Hameed ;
Adam, Afzan ;
Damasevicius, Robertas ;
Mohammed, Mazin Abed ;
Abu Zitar, Raed .
EXPERT SYSTEMS, 2022, 39 (03)
[4]  
Antoniou A., 2017, ARXIV PREPR ARXIV171
[5]   Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks [J].
Apostolopoulos, Ioannis D. ;
Mpesiana, Tzani A. .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (02) :635-640
[6]  
Beigel JH, 2020, NEW ENGL J MED, V383, P1813, DOI [10.1056/NEJMoa2007764, 10.1056/NEJMc2022236]
[7]   Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography [J].
Chen, Jun ;
Wu, Lianlian ;
Zhang, Jun ;
Zhang, Liang ;
Gong, Dexin ;
Zhao, Yilin ;
Chen, Qiuxiang ;
Huang, Shulan ;
Yang, Ming ;
Yang, Xiao ;
Hu, Shan ;
Wang, Yonggui ;
Hu, Xiao ;
Zheng, Biqing ;
Zhang, Kuo ;
Wu, Huiling ;
Dong, Zehua ;
Xu, Youming ;
Zhu, Yijie ;
Chen, Xi ;
Zhang, Mengjiao ;
Yu, Lilei ;
Cheng, Fan ;
Yu, Honggang .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Exact histogram specification [J].
Coltuc, D ;
Bolon, P ;
Chassery, JM .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) :1143-1152
[9]   Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm [J].
Dhanachandra, Nameirakpam ;
Manglem, Khumanthem ;
Chanu, Yambem Jina .
ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 :764-771
[10]   Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images [J].
Fan, Deng-Ping ;
Zhou, Tao ;
Ji, Ge-Peng ;
Zhou, Yi ;
Chen, Geng ;
Fu, Huazhu ;
Shen, Jianbing ;
Shao, Ling .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (08) :2626-2637