Dynamic realization games in newsvendor inventory centralization

被引:9
作者
Dror, M. [1 ]
Guardiola, L. A. [2 ]
Meca, A. [2 ]
Puerto, J. [3 ]
机构
[1] Univ Arizona, Eller Coll Management, Management Informat Syst, Tucson, AZ 85721 USA
[2] Univ Miguel Hernandez, Ctr Operat Res, Elche, Spain
[3] Univ Seville, Fac Matemat, E-41012 Seville, Spain
关键词
dynamic realization games; newsvedor centralization game; cooperative game; allocation process; core; least square value;
D O I
10.1007/s00182-007-0102-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
Consider a set N of n (> 1) stores with single-item and single-period nondeterministic demands like in a classic newsvendor setting with holding and penalty costs only. Assume a risk-pooling single-warehouse centralized inventory ordering option. Allocation of costs in the centralized inventory ordering corresponds to modelling it as a cooperative cost game whose players are the stores. It has been shown that when holding and penalty costs are identical for all subsets of stores, the game based on optimal expected costs has a non empty core (Hartman et al. 2000, Games Econ Behav 31:26-49; Muller et al. 2002, Games Econ Behav 38:118-126). In this paper we examine a related inventory centralization game based on demand realizations that has, in general, an empty core even with identical penalty and holding costs (Hartman and Dror 2005, IIE Trans Scheduling Logistics 37:93-107). We propose a repeated cost allocation scheme for dynamic realization games based on allocation processes introduced by Lehrer (2002a, Int J Game Theor 31:341-351). We prove that the cost subsequences of the dynamic realization game process, based on Lehrer's rules, converge almost surely to either a least square value or the core of the expected game. We extend the above results to more general dynamic cost games and relax the independence hypothesis of the sequence of players' demands at different stages.
引用
收藏
页码:139 / 153
页数:15
相关论文
共 25 条
[1]   Centralization of stocks: Retailers vs. manufacturer [J].
Anupindi, R ;
Bassok, Y .
MANAGEMENT SCIENCE, 1999, 45 (02) :178-191
[2]  
Blackwell D., 1956, PAC J MATH, V6, P1, DOI [10.2140/pjm.1956.6.1, DOI 10.2140/PJM.1956.6.1]
[3]  
BURER S, 2007, UNPUB CONVEX OPTIMIZ
[4]   EFFECTS OF CENTRALIZATION ON EXPECTED COSTS IN A MULTI-LOCATION NEWSBOY PROBLEM [J].
CHEN, MS ;
LIN, CT .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1989, 40 (06) :597-602
[5]   EFFECTS OF CENTRALIZATION ON EXPECTED COSTS IN A MULTI-LOCATION NEWSBOY PROBLEM [J].
EPPEN, GD .
MANAGEMENT SCIENCE, 1979, 25 (05) :498-501
[6]  
Feller W., 1966, INTRO PROBABILITY TH, VII
[7]  
Fern┬u├ndez FR., 2002, INT GAME THEORY REV, V4, P265, DOI DOI 10.1142/S0219198902000690
[8]   COOPERATIVE GAMES IN STOCHASTIC CHARACTERISTIC FUNCTION FORM [J].
GRANOT, D .
MANAGEMENT SCIENCE, 1977, 23 (06) :621-630
[9]   Allocation of gains from inventory centralization in newsvendor environments [J].
Hartman, BC ;
Dror, M .
IIE TRANSACTIONS, 2005, 37 (02) :93-107
[10]  
Hartman BC, 2003, IIE TRANS, V35, P243, DOI 10.1080/07408170390175477