A SURVEY ON VARIATIONAL CHARACTERIZATIONS FOR NONLINEAR EIGENVALUE PROBLEMS

被引:4
作者
Lampe, Jorg [1 ]
Voss, Heinrich [2 ]
机构
[1] Univ Appl Sci Cologne, Inst Elect Engn Syst Theory & Math, Cologne, Germany
[2] Hamburg Univ Technol, Inst Math, D-21071 Hamburg, Germany
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2022年 / 55卷
关键词
nonlinear eigenvalue problem; variational characterization; iterative projection methods; AMLS; quantum dots; viscoelastic damping; total least-squares problems; fluid-solid interaction; GOVERNING ELECTRONIC STATES; JACOBI-DAVIDSON METHOD; FINITE-ELEMENT-METHOD; ILL-POSED PROBLEMS; LEAST-SQUARES; TIKHONOV REGULARIZATION; MATRIX POLYNOMIALS; VISCOELASTIC STRUCTURES; DIFFERENTIAL-EQUATIONS; SUBSTRUCTURING METHOD;
D O I
10.1553/etna_vol55s1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert space H. Bounds for eigenvalues, comparison theorems, interlacing results, and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalizations of these principles to families of linear, self-adjoint operators depending continuously on a scalar in a real interval.
引用
收藏
页码:1 / 75
页数:75
相关论文
共 258 条
[51]  
BJORCK A, 1988, BIT, V28, P659, DOI 10.1007/BF01941141
[52]   Tikhonov regularization of large linear problems [J].
Calvetti, D ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 2003, 43 (02) :263-283
[53]   Estimation of the L-curve via Lanczos bidiagonalization [J].
Calvetti, D ;
Golub, GH ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 1999, 39 (04) :603-619
[54]  
Chen Ke, 2005, Cambridge Monographs on Applied and Computational Mathematics
[55]  
Chuang S. L., 2009, PHYS PHOTONIC DEVICE
[56]  
Chung J, 2007, ELECTRON T NUMER ANA, V28, P149
[57]  
COMSOL, 2006, FEML VERS 33
[58]  
Conca C., 1995, Fluid and Periodic Structures
[60]   COUPLING OF SUBSTRUCTURES FOR DYNAMIC ANALYSES [J].
CRAIG, RR ;
BAMPTON, MCC .
AIAA JOURNAL, 1968, 6 (07) :1313-&