Review in situ transmission electron microscope with machine learning

被引:25
作者
Cheng, Zhiheng [1 ]
Wang, Chaolun [1 ]
Wu, Xing [1 ]
Chu, Junhao [1 ]
机构
[1] East China Normal Univ, Situ Devices Ctr, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
关键词
electron microscopy; machine learning; in situ; image analysis; semiconductor; CARBON NANOTUBES; ATOMIC DEFECTS; SPECTROSCOPY; RESOLUTION; NANOSHEETS; VISUALIZATION; IMAGES; LEVEL;
D O I
10.1088/1674-4926/43/8/081001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Advanced electronic materials are the fundamental building blocks of integrated circuits (ICs). The microscale properties of electronic materials (e.g., crystal structures, defects, and chemical properties) can have a considerable impact on the performance of ICs. Comprehensive characterization and analysis of the material in real time with high-spatial resolution are indispensable. In situ transmission electron microscope (TEM) with atomic resolution and external field can be applied as a physical simulation platform to study the evolution of electronic material in working conditions. The high-speed camera of the in situ TEM generates a high frame rate video, resulting in a large dataset that is beyond the data processing ability of researchers using the traditional method. To overcome this challenge, many works on automated TEM analysis by using machine-learning algorithm have been proposed. In this review, we introduce the technical evolution of TEM data acquisition, including analysis, and we summarize the application of machine learning to TEM data analysis in the aspects of morphology, defect, structure, and spectra. Some of the challenges of automated TEM analysis are given in the conclusion.
引用
收藏
页数:14
相关论文
共 121 条
[31]   Recent advances in gas-involved in situ studies via transmission electron microscopy [J].
Jiang, Ying ;
Zhang, Zhengfei ;
Yuan, Wentao ;
Zhang, Xun ;
Wang, Yong ;
Zhang, Ze .
NANO RESEARCH, 2018, 11 (01) :42-67
[32]   Exploring order parameters and dynamic processes in disordered systems via variational autoencoders [J].
Kalinin, Sergei, V ;
Dyck, Ondrej ;
Jesse, Stephen ;
Ziatdinov, Maxim .
SCIENCE ADVANCES, 2021, 7 (17)
[33]   Lab on a beam-Big data and artificial intelligence in scanning transmission electron microscopy [J].
Kalinin, Sergei, V ;
Lupini, Andrew R. ;
Dyck, Ondrej ;
Jesse, Stephen ;
Ziatdinov, Maxim ;
Vasudevan, Rama K. .
MRS BULLETIN, 2019, 44 (07) :565-575
[34]   Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles [J].
Kim, Byung Hyo ;
Yang, Jiwoong ;
Lee, Donghoon ;
Choi, Back Kyu ;
Hyeon, Taeghwan ;
Park, Jungwon .
ADVANCED MATERIALS, 2018, 30 (04)
[35]  
Koch C. T., 2002, Determination of Core Structure Periodicity and Point Defect Density Along Dislocations, DOI DOI 10.1016/J.ULTRAMIC.2019.02.012
[36]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[37]   Backpropagation Applied to Handwritten Zip Code Recognition [J].
LeCun, Y. ;
Boser, B. ;
Denker, J. S. ;
Henderson, D. ;
Howard, R. E. ;
Hubbard, W. ;
Jackel, L. D. .
NEURAL COMPUTATION, 1989, 1 (04) :541-551
[38]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[39]   Statistical Characterization of the Morphologies of Nanoparticles through Machine Learning Based Electron Microscopy Image Analysis [J].
Lee, Byoungsang ;
Yoon, Seokyoung ;
Lee, Jin Woong ;
Kim, Yunchul ;
Chang, Junhyuck ;
Yun, Jaesub ;
Ro, Jae Chul ;
Lee, Jong-Seok ;
Lee, Jung Heon .
ACS NANO, 2020, 14 (12) :17125-17133
[40]   Deep Learning Enabled Strain Mapping of Single-Atom Defects in Two-Dimensional Transition Metal Dichalcogenides with Sub-Picometer Precision [J].
Lee, Chia-Hao ;
Khan, Abid ;
Luo, Di ;
Santos, Tatiane P. ;
Shi, Chuqiao ;
Janicek, Blanka E. ;
Kang, Sangmin ;
Zhu, Wenjuan ;
Sobh, Nahil A. ;
Schleife, Andre ;
Clark, Bryan K. ;
Huang, Pinshane Y. .
NANO LETTERS, 2020, 20 (05) :3369-3377