Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of Multisensor, Multidisciplinary Earth Observations

被引:16
作者
Durand, Michael [1 ]
Barros, Ana [2 ]
Dozier, Jeff [3 ]
Adler, Robert [4 ]
Cooley, Sarah [5 ]
Entekhabi, Dara [6 ]
Forman, Barton A. [7 ]
Konings, Alexandra G. [5 ]
Kustas, William P. [8 ]
Lundquist, Jessica D. [9 ]
Pavelsky, Tamlin M. [10 ]
Rodell, Matthew [11 ]
Steele-Dunne, Susan [12 ]
机构
[1] Ohio State Univ, Byrd Polar & Climate Res Ctr, Sch Earth Sci, Columbus, OH 43210 USA
[2] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL USA
[3] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA
[4] Univ Maryland, CMNS Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[5] Univ Oregon, Dept Geog, Eugene, OR 97403 USA
[6] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Univ Maryland, Dept Civil & Environm Engn, College Pk, MD 20742 USA
[8] USDA, Agr Res Serv, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[9] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[10] Univ N Carolina, Dept Geol Sci, Chapel Hill, NC 27515 USA
[11] NASA, Goddard Space Flight Ctr, Div Earth Sci, Code 661, Greenbelt, MD 20771 USA
[12] Delft Univ Technol, Fac Civil Engn & Geosci, Delft, Netherlands
来源
AGU ADVANCES | 2021年 / 2卷 / 04期
关键词
remote sensing; hydrology; SNOW WATER EQUIVALENT; SOIL-MOISTURE; DATA ASSIMILATION; SURFACE-WATER; SCANNING LIDAR; ENERGY FLUXES; VEGETATION; LANDSAT; MISSION; EVAPOTRANSPIRATION;
D O I
10.1029/2021AV000455
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Over the last half century, remote sensing has transformed hydrologic science. Whereas early efforts were devoted to observation of discrete variables, we now consider spaceborne missions dedicated to interlinked global hydrologic processes. Furthermore, cloud computing and computational techniques are accelerating analyses of these data. How will the hydrologic community use these new resources to better understand the world's water and related challenges facing society? In this commentary, we suggest that optimizing the benefits of remote sensing for advancing hydrologic research will happen by integrating multidisciplinary and multisensor data, leveraging commercial satellite measurements, and employing data assimilation, cloud computing, and machine learning. We provide several recommendations to these ends. Plain Language Summary Observations from satellites have transformed hydrologic science. Early efforts, five decades ago, mapped attributes like snow cover, rainfall, topography, and vegetation, but now we consider new missions specifically designed to study global hydrologic processes. We also take advantage of new technologies like cloud computing and artificial intelligence. We describe strategies for maximizing the benefits of remote sensing for hydrology, encouraging research across disciplines using multiple sensors, using new commercially available satellites, and combining remote sensing measurements with hydrologic models.
引用
收藏
页数:13
相关论文
共 117 条
  • [31] Estimating the spatial distribution of snow water equivalent in the world's mountains
    Dozier, Jeff
    Bair, Edward H.
    Davis, Robert E.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-WATER, 2016, 3 (03): : 461 - 474
  • [32] Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation
    Ebtehaj, Ardeshir M.
    Bras, Rafael L.
    Foufoula-Georgiou, Efi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07): : 3720 - 3736
  • [33] Accounting for Training Data Error in Machine Learning Applied to Earth Observations
    Elmes, Arthur
    Alemohammad, Hamed
    Avery, Ryan
    Caylor, Kelly
    Eastman, J. Ronald
    Fishgold, Lewis
    Friedl, Mark A.
    Jain, Meha
    Kohli, Divyani
    Bayas, Juan Carlos Laso
    Lunga, Dalton
    McCarty, Jessica L.
    Pontius, Robert Gilmore, Jr.
    Reinmann, Andrew B.
    Rogan, John
    Song, Lei
    Stoynova, Hristiana
    Ye, Su
    Yi, Zhuang-Fang
    Estes, Lyndon
    [J]. REMOTE SENSING, 2020, 12 (06)
  • [34] Moisture pulse-reserve in the soil-plant continuum observed across biomes
    Feldman, Andrew F.
    Gianotti, Daniel J. Short
    Konings, Alexandra G.
    McColl, Kaighin A.
    Akbar, Ruzbeh
    Salvucci, Guido D.
    Entekhabi, Dara
    [J]. NATURE PLANTS, 2018, 4 (12) : 1026 - 1033
  • [35] ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station
    Fisher, Joshua B.
    Lee, Brian
    Purdy, Adam J.
    Halverson, Gregory H.
    Dohlen, Matthew B.
    Cawse-Nicholson, Kerry
    Wang, Audrey
    Anderson, Ray G.
    Aragon, Bruno
    Arain, M. Altaf
    Baldocchi, Dennis D.
    Baker, John M.
    Barral, Helene
    Bernacchi, Carl J.
    Bernhofer, Christian
    Biraud, Sebastien C.
    Bohrer, Gil
    Brunsell, Nathaniel
    Cappelaere, Bernard
    Castro-Contreras, Saulo
    Chun, Junghwa
    Conrad, Bryan J.
    Cremonese, Edoardo
    Demarty, Jerome
    Desai, Ankur R.
    De Ligne, Anne
    Foltynova, Lenka
    Goulden, Michael L.
    Griffis, Timothy J.
    Gruenwald, Thomas
    Johnson, Mark S.
    Kang, Minseok
    Kelbe, Dave
    Kowalska, Natalia
    Lim, Jong-Hwan
    Mainassara, Ibrahim
    McCabe, Matthew F.
    Missik, Justine E. C.
    Mohanty, Binayak P.
    Moore, Caitlin E.
    Morillas, Laura
    Morrison, Ross
    Munger, J. William
    Posse, Gabriela
    Richardson, Andrew D.
    Russell, Eric S.
    Ryu, Youngryel
    Sanchez-Azofeifa, Arturo
    Schmidt, Marius
    Schwartz, Efrat
    [J]. WATER RESOURCES RESEARCH, 2020, 56 (04)
  • [36] Fu L., 2000, SATELLITE ALTIMETRY
  • [37] Garnaud C, 2019, J HYDROMETEOROL, V20, P155, DOI [10.1175/jhm-d-17-0241.1, 10.1175/JHM-D-17-0241.1]
  • [38] Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India
    Girotto, Manuela
    De Lannoy, Gabrielle J. M.
    Reichle, Rolf H.
    Rodell, Matthew
    Draper, Clara
    Bhanja, Soumendra N.
    Mukherjee, Abhijit
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (09) : 4107 - 4115
  • [39] Google Earth Engine: Planetary-scale geospatial analysis for everyone
    Gorelick, Noel
    Hancher, Matt
    Dixon, Mike
    Ilyushchenko, Simon
    Thau, David
    Moore, Rebecca
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 202 : 18 - 27
  • [40] The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields
    Guan, Kaiyu
    Wu, Jin
    Kimball, John S.
    Anderson, Martha C.
    Frolking, Steve
    Li, Bo
    Hain, Christopher R.
    Lobe, David B.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 199 : 333 - 349