Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of Multisensor, Multidisciplinary Earth Observations

被引:16
作者
Durand, Michael [1 ]
Barros, Ana [2 ]
Dozier, Jeff [3 ]
Adler, Robert [4 ]
Cooley, Sarah [5 ]
Entekhabi, Dara [6 ]
Forman, Barton A. [7 ]
Konings, Alexandra G. [5 ]
Kustas, William P. [8 ]
Lundquist, Jessica D. [9 ]
Pavelsky, Tamlin M. [10 ]
Rodell, Matthew [11 ]
Steele-Dunne, Susan [12 ]
机构
[1] Ohio State Univ, Byrd Polar & Climate Res Ctr, Sch Earth Sci, Columbus, OH 43210 USA
[2] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL USA
[3] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA
[4] Univ Maryland, CMNS Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[5] Univ Oregon, Dept Geog, Eugene, OR 97403 USA
[6] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Univ Maryland, Dept Civil & Environm Engn, College Pk, MD 20742 USA
[8] USDA, Agr Res Serv, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[9] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[10] Univ N Carolina, Dept Geol Sci, Chapel Hill, NC 27515 USA
[11] NASA, Goddard Space Flight Ctr, Div Earth Sci, Code 661, Greenbelt, MD 20771 USA
[12] Delft Univ Technol, Fac Civil Engn & Geosci, Delft, Netherlands
来源
AGU ADVANCES | 2021年 / 2卷 / 04期
关键词
remote sensing; hydrology; SNOW WATER EQUIVALENT; SOIL-MOISTURE; DATA ASSIMILATION; SURFACE-WATER; SCANNING LIDAR; ENERGY FLUXES; VEGETATION; LANDSAT; MISSION; EVAPOTRANSPIRATION;
D O I
10.1029/2021AV000455
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Over the last half century, remote sensing has transformed hydrologic science. Whereas early efforts were devoted to observation of discrete variables, we now consider spaceborne missions dedicated to interlinked global hydrologic processes. Furthermore, cloud computing and computational techniques are accelerating analyses of these data. How will the hydrologic community use these new resources to better understand the world's water and related challenges facing society? In this commentary, we suggest that optimizing the benefits of remote sensing for advancing hydrologic research will happen by integrating multidisciplinary and multisensor data, leveraging commercial satellite measurements, and employing data assimilation, cloud computing, and machine learning. We provide several recommendations to these ends. Plain Language Summary Observations from satellites have transformed hydrologic science. Early efforts, five decades ago, mapped attributes like snow cover, rainfall, topography, and vegetation, but now we consider new missions specifically designed to study global hydrologic processes. We also take advantage of new technologies like cloud computing and artificial intelligence. We describe strategies for maximizing the benefits of remote sensing for hydrology, encouraging research across disciplines using multiple sensors, using new commercially available satellites, and combining remote sensing measurements with hydrologic models.
引用
收藏
页数:13
相关论文
共 117 条
  • [1] An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    Ajami, Newsha K.
    Duan, Qingyun
    Sorooshian, Soroosh
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (01)
  • [2] Hydraulic diversity of forests regulates ecosystem resilience during drought
    Anderegg, William R. L.
    Konings, Alexandra G.
    Trugman, Anna T.
    Yu, Kailiang
    Bowling, David R.
    Gabbitas, Robert
    Karp, Daniel S.
    Pacala, Stephen
    Sperry, John S.
    Sulman, Benjamin N.
    Zenes, Nicole
    [J]. NATURE, 2018, 561 (7724) : 538 - +
  • [3] Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
    Anderson, M. C.
    Kustas, W. P.
    Norman, J. M.
    Hain, C. R.
    Mecikalski, J. R.
    Schultz, L.
    Gonzalez-Dugo, M. P.
    Cammalleri, C.
    d'Urso, G.
    Pimstein, A.
    Gao, F.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (01) : 223 - 239
  • [4] Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales
    Anderson, Martha C.
    Yang, Yang
    Xue, Jie
    Knipper, Kyle R.
    Yang, Yun
    Gao, Feng
    Hain, Chris R.
    Kustas, William P.
    Cawse-Nicholson, Kerry
    Hulley, Glynn
    Fisher, Joshua B.
    Alfieri, Joseph G.
    Meyers, Tilden P.
    Prueger, John
    Baldocchi, Dennis D.
    Rey-Sanchez, Camilo
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 252
  • [5] Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
    Anderson, Martha C.
    Allen, Richard G.
    Morse, Anthony
    Kustas, William P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 122 : 50 - 65
  • [6] Assimilating remotely sensed snow observations into a macroscale hydrology model
    Andreadis, Konstantinos M.
    Lettenmaier, Dennis P.
    [J]. ADVANCES IN WATER RESOURCES, 2006, 29 (06) : 872 - 886
  • [7] [Anonymous], 1997, Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Envelopes, DOI [DOI 10.17226/5767, 10.17226/5767]
  • [8] [Anonymous], 2014, Not. Am. Math. Soc., DOI [10.1090/NOTI1095, DOI 10.1090/NOTI1095]
  • [9] [Anonymous], 2013, Landsat and beyond: Sustaining and enhancing the nation's land imaging program, DOI DOI 10.17226/18420
  • [10] Comparative analysis of water budgets across the US long-term agroecosystem research network
    Baffaut, Claire
    Baker, John M.
    Biederman, Joel A.
    Bosch, David D.
    Brooks, Erin S.
    Buda, Anthony R.
    Demaria, Eleonora M.
    Elias, Emile H.
    Flerchinger, Gerald N.
    Goodrich, David C.
    Hamilton, Stephen K.
    Hardegree, Suart P.
    Harmel, R. Daren
    Hoover, David L.
    King, Kevin W.
    Kleinman, Peter J.
    Liebig, Mark A.
    McCarty, Gregory W.
    Moglen, Glenn E.
    Moorman, Thomas B.
    Moriasi, Daniel N.
    Okalebo, Jane
    Pierson, Fred B.
    Russell, Eric S.
    Saliendra, Nicanor Z.
    Saha, Amartya K.
    Smith, Douglas R.
    Yasarer, Lindsey M. W.
    [J]. JOURNAL OF HYDROLOGY, 2020, 588