Enhanced green up-conversion luminescence in In2O3:Yb3+/Er3+ by tri-doping Zn2+

被引:15
作者
Wang, Yuzhen [1 ]
Wen, Zicheng [2 ]
Ye, Wanggui [1 ]
Feng, Zhe [1 ]
Zhao, Chong [1 ]
Zuo, Chuandong [1 ]
Li, Yanbin [1 ]
Cao, Zhiquan [3 ]
Cao, Zhijun [4 ]
Ma, Chaoyang [2 ]
Cao, Yongge [1 ]
机构
[1] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[2] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[3] NYU, 550 1St Ave, New York, NY 10003 USA
[4] Univ Virginia, Charlottesville, VA 22904 USA
基金
国家重点研发计划;
关键词
Up-conversion; Optical materials; Green luminescence; Oxides; Energy transfer; LANTHANIDE; NANOCRYSTALS; ION; NANOPARTICLES; EMISSION; PHOSPHOR; ER;
D O I
10.1016/j.jlumin.2020.117029
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By co-doping Yb3+/Er3+ into ordinary material In2O3, the up-conversion glow behavior will be triggered up. On this basis, the luminescence intensity can be significantly improved by tri-doping Zn2+ ions. Compared with In2O3:Yb3+/Er3+, the luminescence intensity of In2O3:Yb3+/Er3+/Zn2+ is significantly enhanced and the emitting light changes from faint red to bright green. This can be attributed to the reduction of site symmetry of the luminescence center and the promotion of crystallinity because of lattice distortion caused by Zn2+ ions. The upconversion luminescence of the In2O3:Yb3+/Er3+/Zn2+ in the red and green light regions are two-photon excitation process, and the quantum yield (QY) is calculated to be 0.1%. The luminescence at the 524 nm emission peak corresponds to the transition Er3+:H-2(11/2) -> I-4(15/2). Other two emission peaks in green area (550 nm, 564 nm) correspond to the transition Er3+:S-4(3/2) -> I-4(15/2). And the emission peaks in red area (659 nm, 683 nm) root in the transition Er3+:F-4(9/2) -> I-4(15/2).
引用
收藏
页数:7
相关论文
共 36 条
[1]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[2]   Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles [J].
Boyer, John-Christopher ;
van Veggel, Frank C. J. M. .
NANOSCALE, 2010, 2 (08) :1417-1419
[3]   Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals [J].
Chen, G. Y. ;
Zhang, Y. G. ;
Somesfalean, G. ;
Zhang, Z. G. ;
Sun, Q. ;
Wang, F. P. .
APPLIED PHYSICS LETTERS, 2006, 89 (16)
[4]   Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides [J].
Dong, Bin ;
Cao, Baosheng ;
He, Yangyang ;
Liu, Zhuang ;
Li, Zhipeng ;
Feng, Zhiqing .
ADVANCED MATERIALS, 2012, 24 (15) :1987-1993
[5]   Energy transfer in lanthanide upconversion studies for extended optical applications [J].
Dong, Hao ;
Sun, Ling-Dong ;
Yan, Chun-Hua .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (06) :1608-1634
[6]   Enhanced upconversion luminescence and controllable phase/shape of NaYF4:Yb/Er crystals through Cu2+ ion doping [J].
Du, Kaimin ;
Xu, Xia ;
Yao, Shuang ;
Lei, Pengpeng ;
Dong, Lile ;
Zhang, Manli ;
Feng, Jing ;
Zhang, Hongjie .
CRYSTENGCOMM, 2018, 20 (14) :1945-1953
[7]   Lanthanide-doped upconverting phosphors for bioassay and therapy [J].
Guo, Huichen ;
Sun, Shiqi .
NANOSCALE, 2012, 4 (21) :6692-6706
[8]   Upconverting Nanoparticles [J].
Haase, Markus ;
Schaefer, Helmut .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) :5808-5829
[9]   Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations [J].
Kaiser, Martin ;
Wuerth, Christian ;
Kraft, Marco ;
Soukka, Tero ;
Resch-Genger, Ute .
NANO RESEARCH, 2019, 12 (08) :1871-1879
[10]   Highly Intensified Upconversion Luminescence of Ca2+-doped Yb/Er:NaGdF4 Nanocrystals Prepared by a Solvothermal Route [J].
Lei, Lei ;
Chen, Daqin ;
Xu, Ju ;
Zhang, Rui ;
Wang, Yuansheng .
CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (03) :728-733