QUANTUM COHERENT SPACES AND LINEAR LOGIC

被引:2
作者
Baratella, Stefano [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, Italy
来源
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS | 2010年 / 44卷 / 04期
关键词
Quantum coherent spaces; linear logic; bounded exponentials; denotational semantics; normalization;
D O I
10.1051/ita/2010021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum Coherent Spaces were introduced by Girard as a quantum framework where to interpret the exponential-free fragment of Linear Logic. Aim of this paper is to extend Girard's interpretation to a subsystem of linear logic with bounded exponentials. We provide deduction rules for the bounded exponentials and, correspondingly, we introduce the novel notion of bounded exponentials of Quantum Coherent Spaces. We show that the latter provide a categorical model of our system. In order to do that, we first study properties of the category of Quantum Coherent Spaces.
引用
收藏
页码:419 / 441
页数:23
相关论文
共 13 条
[1]   GAMES AND FULL COMPLETENESS FOR MULTIPLICATIVE LINEAR LOGIC [J].
ABRAMSKY, S ;
JAGADEESAN, R .
JOURNAL OF SYMBOLIC LOGIC, 1994, 59 (02) :543-574
[2]  
[Anonymous], POINT AVEUGLE
[3]  
[Anonymous], 1998, Categories for the working mathematician
[4]  
Ansemil JM, 1998, STUD MATH, V129, P285
[5]  
Barr M., 1991, MATH STRUCTURES COMP, V1, P159, DOI DOI 10.1017/S0960129500001274
[6]   Truth, modality and intersubjectivity [J].
Girard, Jean-Yves .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2007, 17 (06) :1153-1167
[7]   BOUNDED LINEAR LOGIC - A MODULAR APPROACH TO POLYNOMIAL-TIME COMPUTABILITY [J].
GIRARD, JY ;
SCEDROV, A ;
SCOTT, PJ .
THEORETICAL COMPUTER SCIENCE, 1992, 97 (01) :1-66
[8]  
Megginson R.E., 2012, An introduction to Banach space theory, V183
[9]  
MELLIES PA, CATEGORICAL SEMANTIC
[10]   Multiplexor categories and models of soft linear logic [J].
Redmond, Brian F. .
LOGICAL FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, 4514 :472-485